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ABSTRACT The gut microbiota is a diverse and dynamic ecological community that
is increasingly recognized to play important roles in host metabolic, immunological,
and behavioral functioning. As such, identifying new routes for manipulating the mi-
crobiota may provide valuable additional methods for improving host health. Dietary
manipulations and prebiotic supplementation are active targets of research for alter-
ing the microbiota, but to date, this work has disproportionately focused on carbo-
hydrates. However, many other resources can limit or shape microbial growth. Here,
we provide a brief overview of the resource landscape in the mammalian gut and
review relevant literature documenting associations between noncarbohydrate nutri-
ents and the composition of the gut microbiota. To spur future work and accelerate
translational applications, we propose that researchers take new approaches for
studying the effects of diet on gut microbial communities, including more-careful
consideration of media for in vitro experiments, measurement of absolute as well as
relative abundances, concerted efforts to articulate how physiology may differ be-
tween humans and the animal models used in translational studies, and leveraging
natural variation for additional insights. Finally, we close with a discussion of how to
determine when or where to employ these potential dietary levers for manipulating
the microbiota.
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The human microbiota make up a large and diverse community that is increasingly
recognized as playing a critical role in human biology (1). Many aspects of physi-

ology are now understood to be directly or indirectly modulated by the microbiota,
particularly in the gut but also elsewhere in and on our bodies (2–4). Because of the
relevance to biomedical science, there is growing interest in manipulating the gut
microbiota to correct imbalances and promote healthy functioning (5–7). Such efforts
are pursued in both academic and industry settings, with a large focus on diet, whether
at the scale of single supplement prebiotics (8), foods rich in probiotic organisms (9), or
cultural differences in nutrient intake (10). It is certainly logical to attempt to use diet
manipulations to shape the gut microbiota, as diet directly affects nutritional niches in
the gut, thereby altering the competitive landscape for gut microbes (11). Indeed, diet
has been found to be a major driver of gut microbial composition (12, 13). However, the
question remains of how to best use diet to manipulate the gut microbiota.

To date, dietary interventions targeting the gut microbiota have focused largely on
carbohydrates, primarily fiber components, and their fermentation to short-chain fatty
acids. This emphasis on carbohydrates, and in particular indigestible carbohydrates,
derives from a simple calculus: the densest populations of microbes (for most animals)
reside in the distal gut, these microbes require nutrients to grow and reproduce, and
diet-derived indigestible carbohydrates reach the distal gut more reliably than do
diet-derived lipids and proteins (14–16). The gut microbial production of short-chain
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fatty acids is important for the host, providing 60% to 70% of the energy used by gut
epithelial cells and up to 30% of the host’s total energy (17). However, it remains
unclear what fraction of the short-chain fatty acids benefiting the host is derived from
carbohydrate fermentation, as short-chain fatty acids are also produced from microbial
protein fermentation (18, 19). Moreover, it is unknown how much of the gut microbi-
ota’s own energy pool is produced through carbohydrate fermentation.

Other factors beyond carbohydrate availability are known to shape overall microbial
load and/or patterns of competition among specific members of the gut microbiota;
these may therefore have direct consequences for human health. Aerobic and anaer-
obic respiration, protein fermentation, and chemosynthesis are continually taking place
(17, 20), and all microbial metabolism requires more than carbon substrates. The microbiota
have been shown to be responsive to other dietary components (Table 1), for example, fat
and protein (21), as is discussed more extensively later in this piece. Indeed, there is
evidence that other elements may be more important than carbon for host management
of the microbiota (e.g., nitrogen [22–24]). As such, provisioning or depleting noncarbohy-
drate microbial resources, limiting or otherwise, would provide additional, potentially even
more efficacious, routes for manipulating the gut microbiota.

Here, we propose that the field of microbiome research should expand thinking about
dietary interventions. We intend not to undermine the value of carbohydrate-focused work
but instead to extend the toolkits of researchers and clinicians by highlighting additional
targets for research. We begin by briefly outlining the nutrient environment experienced by
the microbiota and the mechanisms shaping that landscape. Next, we discuss noncarbo-
hydrate resources in the gut that are likely contenders to impact the microbiota and new
approaches for studying the effects of these resources. Finally, to emphasize the value of
expanded approaches to dietary interventions, we also address what the outcome of such
interventions could be, including alterations to both the metabolic and nonmetabolic
contributions of microbiota to the host.

HOST DIGESTIVE PHYSIOLOGY AND THE RESOURCE ENVIRONMENT OF THE GUT
MICROBIOTA

The mammalian gut microbiota as a whole is dominated by obligate anaerobes from
the Firmicutes and Bacteroidetes phyla. However, gut microbial abundance, composi-
tion, and function differ radially and longitudinally across regions in response to
fine-scale differences in the resource environment (1, 25).

Radial variation in the microbiome is driven by host immune defense, mucus
production, epithelial sloughing, and environmental gradients in nutrients and oxygen
(26, 27). Lateral communities, adhering to the epithelium or mucosal layers, are generally
less diverse and less densely colonized than luminal bacterial communities (27–29). The
microbes that are present are more likely to be oxygen tolerant and specialize in the
metabolism of protein than luminal microbes (26). Due to their relatively high dependence
on host secretions rather than diet-derived nutrients, epithelial and mucosal adherent
microbial communities are generally more stable over time than luminal microbial com-
munities (27) and likely more resistant to manipulation via diet. Because of their stability,
and the fact that surveying these communities is invasive and therefore impractical for
temporal tracking of the effects of a dietary intervention on the gut microbiome, we focus
here on the luminal microbial community.

Across mammals, longitudinal variation in the gut microbiota is driven largely by
host gut ecophysiology. Diet directly impacts the presence of macronutrients, micro-
nutrients, and phytochemicals in the lumen and, over evolutionary time, has also
shaped the basic structure of the gut and related host-derived environmental factors
like pH, passage rate, and enzyme production. At the broadest level, this is evident in
the differences between foregut and hindgut fermenters. Ruminant and pseudorumi-
nant animals, such as cows, sloths, and colobus monkeys, have independently evolved
specialized multichambered stomachs that allow microbial fermentation to occur prior
to the passage of chyme into the small intestine, where the majority of host digestion
and absorption occurs. In these gastric fermentation chambers, conditions are main-
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tained to encourage efficient microbial metabolism of cellulose, including relatively
high pH and relatively low passage rates for individual particles. In contrast, hindgut
fermenters, like horses and rhinoceroses, have physiological adaptations to promote
microbial residence and fermentation distal to the stomach and small intestine in an
enlarged hindgut and a well-developed cecum. In both cases, these animals, which
forage primarily on plant materials but lack the enzymes required to break down
cellulose and hemicellulose themselves, actively promote microbial growth and fer-
mentation and in turn gain a substantial fraction of their total energy budget from the
absorption and metabolism of microbiota-derived volatile fatty acids. In contrast,
animals with simple guts synthesize the enzymes required to digest the majority of

TABLE 1 Select experimental findings on microbial responses to dietary interventions showing that dietary elements beyond fiber often
contribute to microbial variation

Resource(s) Finding(s) Host Reference

Fat Consumption of high-saturated-fat diet increased relative abundance of
Bilophila wadsworthia and promoted inflammation in genetically susceptible
mice via bile acid alterations

Mouse 83

Fat High-fat diets altered the gut microbial community, but these responses were
idiosyncratic based on fat source

Mouse 112

Fat High-fat-diet-associated small intestinal microbial community altered lipid
digestion even when mice were fed a low-fat diet

Mouse 109

Fat Switch to Westernized diet produced relative increases in Firmicutes and
decreases in Bacteroidetes, a decrease in microbial diversity, and a greater
increase in body fat than in controls

Mouse 110

Fat, fiber Bacterial communities in mice fed low-fat/high-fiber diets or high-fat/high-
sugar diets differed in composition but were mostly resilient to diet
changes; in contrast, viral communities responded rapidly to switch
between diets

Mouse 111

Fat, fiber Microbial responses to introduction of high-fat/low-fiber or low-fat/high-fiber
diets were documented within 24 h but were insufficient to overcome
interindividual variability

Human 13

Fat, sugar High-fat/high-sugar and low-fat/high-fiber diets shaped the gut microbiota
consistently across mice with different genotypes and metabolic/immune
phenotypes; blending the diets led to proportional changes in the gut
microbiota

Mouse 12

Iron Infant iron supplementation increased enterobacterial and Clostridium
abundances, including many pathogens

Human 38

Iron Child iron supplementation altered the gut microbiota, with a relative
increase in enterobacteria and decrease in lactobacilli, even without
changing human iron status

Human 146

Protein Higher dietary casein levels increased total microbial DNA; some taxa,
including members of the Clostridia and the sulfate reducer Desulfovibrio,
decreased

Mouse 120

Protein Gut microbial community was responsive to dietary fat content but not
protein/sucrose ratio; host adiposity and survival were shaped by protein/
sucrose ratio

Mouse 121

Protein Increasing protein levels led to higher total microbial loads and changes in
composition, including Bacteroidaceae absolute abundance

Mouse 24

Protein High-protein diets changed fecal short-chain-fatty-acid concentrations, most
notably reducing butyrate levels while also reducing the proportion of
some Firmicutes and members of the Bacteroides

Human 122

Protein Changes in dietary protein or fiber amt did not alter the microbial community
at the phylum level, but high-protein diets were associated with an
increase in Oscillibacter and a decrease in Collinsella aerofaciens

Human 123

Protein, fiber Microbial relative-abundance and diversity responses to altered protein and
fiber levels were more significant than responses to changes in fat or
energy density across a range of diets

Mouse 23

Protein, fat Short-term human diet interventions involving high-protein/high-fat diets
resulted in rapid changes in the microbiota, including increases in bile-
tolerant bacteria like Bilophila wadsworthia and members of the Bacteroides,
with concurrent reductions in some Firmicutes

Human 21

Protein, fiber, fat, sugars Microbiota changes and associated inflammation were consistently recorded
in response to various levels of multiple fiber and protein sources but not
digestible carbohydrates or most fats

Mouse 189
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their diet and exhibit a range of adaptations that serve to restrict the largest popula-
tions of microbes to the colon, ensuring that the host retains first access to nutrients.

Humans exemplify this first-pass resource access strategy. Gut microbial density
increases exponentially along the human gastrointestinal tract, with 102 to 103 mi-
crobes per ml of effluent in the stomach, 103 to 105 in the proximal small intestine, 108

in the ileum, and 1011 in the colon (1, 30, 31). Concomitant with this increase in
microbial density are gradients in oxygen, pH, antimicrobial peptides (AMPs), and
immunoglobulins (1). These gradients are the outcome of coevolution between hu-
mans and the human gut microbiota, a shared history marked by cooperation but also
competition, in which humans have maximized the fraction of ingested nutrients
serving our own metabolism by isolating primary digestion from the bulk of the
microbial community.

Ultimately, the ecological niches available for microbial colonization are determined
by the interaction of host physiology and dietary ecology, with diet being more readily
modifiable than physiology. Below, we review how diet interacts with host physiology
to shape gut microbial communities, with the goal of highlighting some properties of
diet that serve as promising targets for therapeutic manipulation.

HOST DIET AND NUTRIENT AVAILABILITY IN THE HUMAN GUT

Nutrient availability in the gut is largely a function of four distinct processes: (i)
dietary intake, (ii) host uptake of diet-derived nutrients, (iii) host endogenous secre-
tions, and (iv) microbial metabolism of diet-derived, endogenous, and microbiota-
derived compounds (Fig. 1). The broad relevance of dietary intake is clear, as most
resources in the gut, as in the rest of the body, are ultimately acquired via diet.
However, downstream processing of diet-derived compounds, by both host and mi-
crobiota, contributes importantly to the resource environment of the lumen. We focus
here on these other processes shaping nutrient availability.

Host uptake of diet-derived nutrients. Given that the densest and most diverse
gut microbial populations in humans reside in the distal gut, in considering the effect
of diet on the nutrient environment, it is critical to consider the fraction of diet-derived
nutrients that actually reaches the colon.

Distinct pathways exist for the digestion of carbohydrates, proteins, and fats, but
their absorption is not equally efficient. Free dietary lipids are almost completely

FIG 1 Nutrient landscape of the gut as shaped by host and microbial processes. Gut microbial absolute and relative
abundances are expected to be sensitive to the nutrients available within the gut lumen. Nutrient composition in the gut
lumen is, in turn, dependent on (i) dietary intake of macronutrients, micronutrients, and phytochemicals; (ii) the bioavailability
of those nutrients within the small intestine, which alters the fraction of ingested nutrients reaching the densest microbial
communities in the colon; (iii) endogenous secretions such as bile acids and digestive enzymes that alter competitive dynamics
among gut microbial taxa and/or modulate bioavailability; and (iv) microbial metabolism of nutrients, producing metabolites
that may have downstream effects on competitive dynamics within the gut microbiota.
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absorbed by the terminal ileum, although fats contained within plant cell walls may
remain inaccessible to digestion unless cell walls are ruptured by processing (32, 33). In
contrast, dietary proteins and dietary carbohydrates show high degrees of variability in
bioavailability based on their chemical form (16). Denaturation of proteins via heat or
acid causes the protein structure to unfold, promoting bioavailability; for instance, there is
a 2-fold increase in the ileal digestibility of egg protein served raw (51% to 65%) versus
cooked (91% to 94%) (34, 35). In humans, most protein-rich foods are routinely cooked, and
approximately 80 to 90% of proteins are absorbed in the small intestine (36). The bioavail-
ability of carbohydrate also depends on its structure, with simple sugars being readily
absorbed in the small intestine, complex polysaccharides (e.g., cellulose, lignin, pectin, and
oligosaccharides) resisting digestion in the small intestine, and starch being either highly
digestible or resistant, depending on its form (15, 37). Starch, the most common carbohy-
drate in the human diet, exists in a native state that is resistant to digestion by amylases,
but here too, cooking produces consistent and significant increases in ileal digestibility
ranging from 28% to 109% for substrates tested in humans (16).

The small intestine is also the site of vitamin, mineral, and metal absorption. Most
water-soluble vitamins (e.g., vitamin C) are readily absorbed via active transport in the
jejunum, while protein-bound B vitamins and fat-soluble vitamins (e.g., vitamins A, D,
E, and K) are primarily absorbed further along the small intestine. Minerals are absorbed
in the small intestine via either active transport in the proximal small intestine or
passive diffusion around tight junctions in the distal small intestine. Divalent metals
such as iron can be transported from the duodenal lumen via the divalent metal
transporter or enter enterocytes in the form of heme via endocytosis, although not all
dietary iron is taken up (38). Other diet-derived compounds, such as phytochemicals
and chemical by-products of food processing, exhibit various degrees of absorption in
the small intestine. Many common compounds, such as plant-derived polyphenols (39),
are known to pass through the mammalian small intestine largely intact. Such poorly
absorbed compounds may be especially likely to affect the microbiome because they
concentrate in the colon as digestible nutrients and water are removed.

Ultimately, dietary material depleted of macronutrients and micronutrients passes
into the colon, where water and electrolytes are recovered directly and residual
nutrients become substrates for microbial metabolism. The mammalian colon has a
limited ability to absorb diet-derived nutrients directly, but volatile short-chain fatty
acids produced during microbial fermentation of carbohydrates and proteins diffuse
into enterocytes, where they serve as important metabolic fuel for both local and
systemic energy metabolism. Nutrients may be salvaged after processing in the large
intestine through coprophagy, but this process is common only in some nonhuman
species (40).

Host endogenous secretions. In addition to diet-derived nutrients, the intestinal
lumen is also rich in products produced by the host. For instance, epithelial cells are
sloughed constantly, having the highest turnover rate of any fixed-cell population in
the body. Upon entry into the intestinal lumen, these shed cells become substrates for
both host and microbial metabolism (41). Epithelial cell life cycles interact with nutri-
tional factors, with luminal nutrients directly modulating the rate of intestinal cell
proliferation (42, 43).

Beyond the luminal nutrients introduced by epithelial cell sloughing, the host gut
actively secretes compounds that modulate the gut microbiota via nutritional or
antimicrobial effects. Goblet cells located along the entire intestinal tract secrete a
continuous layer of mucus, composed of mucin glycoproteins (primarily MUC2) and
trefoil peptides. Mucus serves as a critical barrier between the epithelium and the gut
lumen, whose production is modulated by both host genetics and diet (44–46).
However, mucus is also both a habitat and a nutrient source that differentially pro-
motes the growth of specific microbial taxa. Although commensal bacterial genomes
are generally rich in glycan-degrading enzymes (47, 48), some bacterial taxa (e.g.,
Akkermansia muciniphila [49] and Ruminococcus gnavus [50]) produce specialized gly-
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cosidases that confer an enhanced ability to metabolize MUC2 oligosaccharides. Gut
microbiota composition can further alter patterns of oligosaccharide glycosylation (51),
and the activity of mucolytic bacteria like A. muciniphila may actually stimulate mucus
production in the host (52).

The host gut also produces a range of antimicrobial compounds to restrict microbial
growth and prevent invasion into the mucosa. For instance, intestinal epithelial cells
secrete IgA into the lumen via the polymeric immunoglobulin receptor (53), releasing
an estimated 3 to 5 g daily (54). Paneth cells secrete a wide range of antimicrobial
peptides (AMPs) that disrupt gut microbial cell membrane integrity and/or cellular
function, including �-defensins and lysozymes (55). Jointly, IgA and AMPs regulate the
growth of commensal gut bacteria, exerting selective effects that shape gut microbial
community structure (56, 57). However, the extent to which diet shapes IgA and AMP
production in the lumen remains to be determined.

Animals also secrete bile acids with robust direct (58, 59) and indirect (60) bacteri-
cidal properties. Bile is released into the duodenal lumen in response to ingestion of
fats and serves to emulsify dietary lipids. Roughly 95% of bile acids released into the
small intestine are reabsorbed in the ileum for recycling, but approximately 400 to
800 mg of bile acids daily escapes enterohepatic circulation (61). Residual bile acids can
reach high-millimolar concentrations in the colon, where differential resistance to the
antimicrobial effects of bile acids contributes to shaping gut microbial structure and
function (62–65). Given any differential sensitivity of gut microbial taxa, dietary-fat-
induced variation in bile acid production can be expected to influence gut microbial
community structure and function.

Microbial metabolism of luminal compounds. The gut microbiome harbors a
metabolic capacity that far exceeds our own (66). Microbes can transform carbohy-
drates in ways that extend beyond fermentation. For instance, some microbes can
degrade host-produced glycans such as intestinal mucus and human milk oligosaccha-
rides, releasing nutrients into the lumen and exposing the residual glycan structure to
further degradation by other members of the commensal community (67–69). The colonic
gut microbiota can metabolize a wide variety of noncarbohydrate dietary compounds that
resist digestion in the small intestine, including proteins (18, 70), polyphenols such as
lignans (71, 72), and xenobiotic compounds like polycyclic aromatic hydrocarbons (73). Gut
bacteria can also synthesize numerous macronutrients and micronutrients, including es-
sential amino acids like lysine. Indeed, isotopic labeling studies in humans have found
microbiota-derived lysine to contribute substantially to the plasma lysine and body protein
pools, even on nitrogen-adequate diets (74, 75). Such activities can modify the resource
environment of the gut, independent of and in conjunction with host action, with further
consequences for gut microbial structure and function.

Bile acids offer a prime example of the ecological consequences of noncarbohydrate
microbial metabolism. As mentioned above, bile acids that escape enterohepatic
circulation and pass into the colon can possess strong antimicrobial properties. A key
line of gut bacterial defense is to manipulate the antimicrobial properties of the primary
bile acids produced by the host via deconjugation or transformation into secondary bile
acids with altered chemical properties. Deconjugation involves the action of bile salt
hydrolases (BSHs) that hydrolyze the bond linking the bile acid to the amino acid
conjugate, which in humans is either taurine or glycine. BSH activity appears unique to
the gut environment (76) and can show high redundancy within carrier taxa (e.g.,
Lactobacillus plantarum carries 4 functional BSH genes [77]), in which it may confer a
survival advantage by reducing the stronger detergent properties of the conjugated
forms. BSH activity is encoded in multiple Gram-positive and archaeal taxa but appears
less widely distributed among Gram-negative bacteria, with functional BSH genes
detected to date only among Bacteroides strains (62). Interestingly, taurine versus
glycine conjugation of bile acids appears to depend on habitual diet, with animal-rich
diets increasing the rate of taurine conjugation and plant-based diets enriching for
glycine conjugation (78, 79). The higher rate of taurine conjugation on animal-rich diets
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is presumably due to an increased availability of taurine, which is derived exclusively
from animal tissue and which humans have lost the ability to synthesize efficiently (80,
81). Thus, diet might shape gut microbial community structure via BSH both by
changing the abundance of microbes possessing hydrolase activity and by modulating
luminal concentrations of free taurine and glycine, which can be used as sources of
nitrogen and carbon to enhance growth (82).

Notably, gut microbial responses to taurine versus glycine conjugation can also
impact human health directly. For instance, because taurine catabolism releases sulfite
in addition to ammonia and carbon dioxide, taurine deconjugation may select for
sulfidogenic bacteria such as Bilophila wadsworthia, with downstream consequences
for intestinal inflammation (83). In addition, germination of the nosocomial enteric
pathogen Clostridium difficile from spores is maximized in the presence of taurocholic
acid and glycine (84); indeed, most clinical isolates of C. difficile appear to require
the taurine conjugate to germinate (85). Together, such data suggest a microbiota-
mediated link between taurine-rich diets and the risk of gastrointestinal pathology.

Gut bacteria also transform host-produced primary bile acids into secondary forms
with altered chemical properties. Cholic acid (CA) and chenodeoxycholic acid (CDCA)
together represent 80% of the primary bile acid pool in humans (86) and are trans-
formed by microbial metabolism into the two most abundant secondary bile acids in
the human gut, deoxycholic acid (DCA) and lithocholic acid (LCA), respectively (87).
Conversion of primary to secondary bile acids typically involves 7�-dehydroxylation, a
multistep biochemical pathway found exclusively in anaerobic gut bacteria, most
notably among members of Clostridia cluster XIVa (87–90). Correspondingly, the
antibiotic-induced reduction in bacterial taxa capable of 7�-dehydroxylation shifts the
fecal bile acid pool from secondary to primary bile acids (84, 91). Gut bacteria are also
capable of oxidizing and epimerizing other hydroxy groups in the primary bile acid
structure, altogether yielding more than 20 secondary structures (62). As a result of this
microbial activity, the fecal bile acid pool consists almost exclusively of unconjugated
and secondary bile acids (87).

Bacteria capable of transforming primary to secondary bile acids might benefit by
outcompeting or inhibiting taxa more sensitive to secondary bile acids (62), with
downstream effects on host health. For instance, Clostridium scindens and Clostridium
hiranonis show 10-fold-higher 7�-dehydroxylating activity than other Clostridia, a phe-
notype linked to the production of an NAD(H)-dependent 3-dehydro-4-bile acid oxi-
doreductase encoded by the baiCD gene cluster (92, 93). This 7�-dehydroxylating
activity is thought to underlie the protection conferred by these taxa against C. difficile
colonization (94, 95), an effect potentially mediated by the inhibitory effect of second-
ary bile acids on C. difficile germination (84, 96). Notably, symptomatic C. difficile
infection in humans was recently associated with negative or low baiCD gene cluster
abundance, and a case study reported that successful treatment of recurrent C. difficile
infection via fecal microbiota transplant (FMT) was associated with a shift from a
baiCD-negative status pre-FMT to a baiCD-positive status post-FMT (91). Similarly,
experimental administration of C. scindens was recently shown to confer resistance to
C. difficile infection, with effects dependent on the synthesis of secondary bile acids
(95).

Microbial processing of mucus is another example of the complex metabolic capac-
ity of the gut microbiota. Although the capacity to degrade mucin is phylogenetically
widespread (97), in vivo stable isotope experiments have found that there is significant
interspecific and intraspecific variation in mucin foraging (98). There is also differential
uptake of various components of mucin, with most cells incorporating mucin-sourced
nitrogen, likely via its circulation in the free ammonium pool and incorporation during
amino acid synthesis, while only a small proportion of the community takes up
mucin-sourced carbon through direct metabolism of mucin oligosaccharides (98).
Mucus serves as an important resource for the gut microbiota, especially when dietary
resources are reduced. For example, mucin metabolism increases under dietary fiber
deprivation (99), leading to a thinner mucosal layer and increased pathogen suscepti-
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bility. Correspondingly, mucus-degrading bacteria are relatively more abundant in
hibernating or fasting animals (100, 101).

Ultimately, as these examples attest, the resource landscape of the distal gut lumen
is a complex function of host physiology, nutritional ecology, and microbial activities.
However, the system reacts to dietary levers in ways that, with additional research
encompassing a range of substrates, we may ultimately be able to control precisely.

NONCARBOHYDRATE DIETARY COMPONENTS AND THE GUT MICROBIOTA

Much research effort has focused on relating variation in the gut microbiota to
differences in diet. Diet dissimilarities between countries (102, 103), seasons (104, 105),
and lifestyles (106, 107) are all associated with variation in the gut microbiota. More
broadly, contrasts, and similarities, between animal species in their gut microbiota are
also ascribed to diet (108). However, isolating what specific aspects of diet drive gut
microbial composition and function is a complex and multifaceted problem. Gut
microbial taxa may respond to differences in macronutrients, micronutrients, and
elemental availability, all in various intersecting manners. Does a change following
altered protein intake reflect responsiveness to protein availability? The macronutri-
ent(s) replacing or replaced by protein? Nitrogen availability? Iron or other minerals
found in protein-rich food? Most experiments unfortunately do not allow for ascribing
causality precisely. Here, we briefly review some recent experimental work exploring
the relationship between the noncarbohydrate fraction of diet and the gut microbiota
and highlight some of the dietary constituents that we expect contribute to gut
microbial responses (Fig. 2).

As many studies have found differences in the gut microbiota and health outcomes
of Western and non-Western populations, much research has been performed in
humans and mice using Western-style high-fat diets (12, 13, 83, 109, 110) or other
altered-fat diets (111, 112). The gut microbiota is typically found to respond to changes
in dietary fat, perhaps unsurprisingly since the gut microbiota is known to contribute
to host metabolism of fats (21, 109, 113, 114). The effect of increased fat consumption
can often be specifically tied to changes in bile acid production and metabolism (83,
109, 115, 116). Interruption of microbial bile acid metabolism by antibiotics or dietary
shifts has been associated with negative health outcomes, including inflammation (117)
and C. difficile infection (94, 95). As such, alterations to dietary fat consumption and thus
bile acid production are expected to serve as meaningful tools for manipulating the gut
microbiota, particularly in the context of disease. In most humans consuming Western-

FIG 2 Many resources relevant to microbial growth and function are naturally sourced from the typical
human diet. Identifying what specific resources drive microbial differences in humans whose diets vary is
a complicated endeavor, however. Here, we show how the USDA MyPlate-recommended diet compo-
nents include various microbially relevant resources such that changing diet broadly may not allow
researchers to ascribe causality to microbial changes. Further theory on limiting resources and controlled
experiments isolating individual aspects of diet are necessary to develop a dynamic range of manipu-
lations and to understand the degree to which host physiology modulates microbial responses to diet.
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style diets, this may mean focusing on reducing fat intake, altering the proportional
intake of fats from different sources (118, 119), and/or combatting downstream micro-
bial effects through alternative diet changes.

Less research has been conducted on dietary protein levels than on fats or carbo-
hydrates. However, work that has been carried out has shown significant responses in
the gut microbiota following increases in protein intake (21, 23, 120–123). Indeed,
changes in protein levels have been found to be one of the most significant predictors
of gut microbial responses in studies that compare populations (13) or multiple dietary
manipulations (23, 120). It has been proposed that this is because nitrogen is a limiting
nutrient in the gut (24), and therefore, nitrogen availability would determine overall
biomass in the system (24) and also set the terms for competition over other resources
like carbohydrates (23). Nitrogen is commonly limiting in environmental microbial
communities (124–127) as well as for animal hosts (128). Nevertheless, how particular
forms of nitrogen (e.g., protein, amino acid, and free circulating ammonium [129])
contribute to microbial dynamics in the gut requires further study. Microbes both
utilize and produce amino acids, for example, modulating the availability of the
essential amino acid tryptophan, with downstream implications for inflammation,
disease, and nervous system signaling (18, 130–132). Dietary sources will need to be
considered alongside host secretions like mucus (98) and urea (133) as well as microbial
biosynthesis of nitrogen-rich products (75) that can also play a prominent role in gut
nitrogen dynamics. Overall, due to the theoretical and empirical support for nitrogen
limitation, it seems likely that changing dietary protein will be a powerful tool for
manipulating the gut microbiota.

Beyond the macronutrients, there are many other components of diet that matter
for host nutrition and likely also gut microbial growth and functioning. For example,
phosphorus is another element that is commonly limiting for microbes in the environ-
ment (126, 134–136) and has been shown to limit gut bacterial growth in vitro (137),
but its role in vivo has not yet been studied. Better understood are trace metals, which
are essential micronutrients for animals and can also contribute to gut microbial
dynamics (138). Most research has focused on the importance of metal-based mole-
cules for pathogen colonization and growth (38, 139–141) or their antimicrobial
functions (142), but the competition for metals observed in pathogens (143) can also
affect commensals (129, 137, 144, 145). Iron supplementation can alter gut microbial
composition, most notably with increases in potential pathogens, even without chang-
ing host iron levels (38, 146). Zinc deficiency or excess has also been shown to produce
altered gut microbial profiles and metabolism (147, 148). Similarly, polyphenols from
plant sources, including tea, wine, and berries, can also modulate the gut microbiota by
depleting sensitive taxa, promoting the growth of resistant taxa, and/or manipulating
host-microbe interactions in a manner linked to positive health outcomes (149–152),
including attenuated development of obesity and glucose intolerance in mice fed a
high-fat/high-sugar diet (150, 153). Characterizing differences in nonmacronutrient
dietary components accurately is challenging in observational studies, particularly ones
that rely on dietary recall or population-wide trends. Therefore, relationships between
these aspects of diet and gut microbial communities likely have gone undetected in
many studies. Nevertheless, the underlying biology implies that they may prove to be
rich untapped drivers of the microbiota.

Diet also impacts substrates for microbial respiration. While these molecules are not
typically sourced directly from the diet, their availability as well as their usage are in part
determined by host metabolism of diet. Various electron acceptors have been found to
play an important role in pathogenesis, providing a unique metabolic niche that few
strains can utilize to colonize (154–158). More generally, changes in electron acceptor
availability underlie competition between respiring bacteria and fermenters and con-
tribute to community dynamics following antibiotic disturbance (159). Similarly, com-
petition between acetogens, methanogens, and sulfate-reducing bacteria for hydrogen
gas, an end product of carbohydrate fermentation (160), likely dictates the levels of
these organisms in the human gut (161), as has been shown in ruminants (162, 163).
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The availability of sulfate will also determine the abundance of sulfate reducers like
Desulfovibrio piger (164, 165), although the potentially toxic effects of their metabolism,
mediated by the sulfide end product, will be shaped by the abundance of methano-
gens which can utilize the hydrogen in H2S and thereby detoxify it (166).

Various other molecules and substrates likely play a role in microbial community
dynamics in the gut. Numerous therapeutic and diet-derived xenobiotics are known to
change gut microbial growth in vivo (167) and in vitro (168). For instance, a recent in
vitro screen of more than 1,000 nonantibiotic drugs found that 24% of drugs with
human targets inhibited the growth of at least 1 of the 40 human gut bacterial strains
tested (168). Resource availability may also determine the ability of gut bacteria to
make signaling molecules or other molecules mediating microbial interactions. Diet
and microbial metabolism can affect gut pH (169) or redox state (159) and have further
downstream effects on microbial composition. Although an in-depth review of all
relevant conditions is not possible here, we hope that these examples highlight the
diversity of diet-associated properties beyond fermentable carbohydrates that impact
the gut microbiota.

RECOMMENDATIONS FOR FUTURE RESEARCH

As outlined in the section above, various noncarbohydrate diet interventions can be
expected to manipulate the gut microbiota. We would argue, however, that adjust-
ments to the way that we analyze such manipulations will help identify and refine
appropriate substrates of focus above and beyond just testing more resource types.
Although there are numerous potential pathways to enhance the detection and
mechanistic characterization of dietary levers, we offer four initial recommendations for
new tacks to studying dietary properties that shape and can potentially manipulate the
gut microbiota.

First, we propose that in vitro studies should utilize more-diverse media to ensure
that all aspects of nutrient limitation might be captured. Minimal media are typically
carbon limited and thus are most likely to identify interactions based on carbon. Studies
with complex media most often use modified Gifu anaerobic medium (MGAM), a rich
medium with high success for isolating gut strains (170) but one mismatched to the gut
with regard to the abundance of various substrates. For example, at a very simple level,
MGAM has a much lower carbon-to-nitrogen ratio (i.e., much higher nitrogen availabil-
ity) than the mammalian gut (24). Varying nutrient availability even among rich media
can result in highly differential growth (171), and more-thorough assays, including
variation in the concentrations as well as kinds of nutrients available, should be done
to identify nutrient requirements of different taxa. However, if a single medium is to be
used, it should be designed to more closely hew to conditions found in the gut.

Second, we propose that research more often include measurements of changes in
absolute abundance. Amplicon sequencing produces compositional data, which have
many statistical limitations (172, 173). Recent work by Vandeputte and colleagues (174)
demonstrated that variation in absolute abundance underpins changes in host phe-
notype more so than variation in relative abundance. However, only a small fraction of
research on gut microbial responses to diet incorporates absolute-abundance data. It
has been shown that changes in dietary protein altered overall concentrations of fecal
bacteria in mice (24), supporting the inference that nitrogen is limiting in the gut. In
contrast, while adding an indigestible carbohydrate (porphyran) to mouse diets al-
lowed colonization by an exogenous strain of Bacteroides, there was not an overall
increase in the number of bacteria (175); that is, the new strain ousted an equal number
of other bacteria, a distinction not evident from relative-abundance data alone. Be-
tween these two studies, we can observe that some dietary manipulations (like changes
in protein content) change the total biomass of the ecosystem, whereas others (like the
addition of porphyran) change only community composition. Each may be a worth-
while goal, but they are nevertheless distinct. Appreciating and tailoring experiments to
capture these differences will be necessary for interventions targeting specific health
outcomes.
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Third, we recommend more prudence when translating data from mouse research
to humans. The mouse gastrointestinal tract differs in important ways from that of
humans from mouth to anus and as such likely harbors a unique resource environment.
For example, mice have lower ratios of small intestine to large intestine length (176)
and area (177), which may decrease nutrient uptake proximal to the bulk of the
microbial community, thereby dampening resource limitations present in humans.
Mouse studies frequently report microbial community structural and functional profiles
based on endpoint cecal samples; these profiles are unlikely to be recapitulated in
humans, who lack an enlarged, functionally separate cecum (176). More generally, the
mouse microbiota is not identical to that of humans (178); thus, humanized mice (i.e.,
germfree mice colonized by a human gut microbial community) are considered a closer
alternative (179). However, humanized mice retain the anatomical differences from
humans and also have numerous physiological differences from conventional mice,
including a deficient immune system (180), which may make them less appropriate for
use in studies of disease. It is also important to note that the environment experienced
by mice in experiments differs from typical human conditions. Most notably, mouse
diets do not vary under standard husbandry, so the introduction of a new diet or diet
component may represent a more significant disturbance than when a human intro-
duces a new food atop their normally variable diet. As omnivorous mammals, mice are
ecologically similar to humans in many ways and have a long history of coresidence
with humans. Moreover, given that laboratory mice have been reared for hundreds of
generations in direct contact with humans and consuming highly processed (milled
and cooked) diets, it is possible that mice and humans exhibit a degree of convergent
adaptation in digestion that remains unexplored. Certainly, given the exceptional
genetic, environmental, and microbiological control possible with mice, and the depth
of systemic understanding arising from their frequent use in biological studies (181),
mice will remain critical experimental models for studies of the microbiota. However,
we would advocate that researchers should keep the differences outlined above in
mind and seek to treat them more transparently.

Finally, we encourage leveraging variability in responses to more clearly understand
the nuances inherent in dietary interventions. It is likely not the case that the same
nutrients will be limiting in every gut due to individual host variation in diet or
physiology. Focusing on individual responses will provide a clearer picture of what
nutrients can shape the gut microbial community and in what contexts. For example,
studies targeting resistant starch as a possible prebiotic have observed variable re-
sponses, with nearly half of individuals showing limited responses in gut microbial
structure or microbial function, as measured by short-chain-fatty-acid concentrations
(182). Similarly, some individuals have been found to pass most added resistant starch
intact, whereas others have microbial communities that ferment �95% of it (123). With
more-extensive studies of what defines a responsive community, it may be possible to
design personalized interventions tailored to an individual’s baseline microbial com-
munity composition and functional potential.

MANIPULATIONS TO WHAT END?

While many resources can shape the composition and function of the gut microbi-
ota, different resource manipulations will be appropriate depending on the context.
The goal of intervention to either promote or eliminate particular microbially mediated
host phenotypes should determine the area of focus. In general, such phenotypes can
be considered to belong to either of two categories: nutritional and nonnutritional
contributions of the gut microbiota.

Unsurprisingly, nutritional contributions of the gut microbiota can be manipulated
by altering the nutrients available in the lumen. Microbes break down diet components
to grow and in so doing may produce metabolites taken up by the host, such as
short-chain fatty acids but also amino acids, lactate, and ammonia (11, 17). Microbial
symbionts can also produce nutrients that are missing from or insufficient in the diet,
including essential vitamins (183) and amino acids (75). Changing diets can produce
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alterations to these metabolic pathways, resulting in changes in host provisioning (e.g.,
see reference 110). Focusing diet interventions on substrates that are necessary in the
metabolic process of interest, and in particular those substrates that are limiting to the
process, will allow for greater dynamic control over microbial metabolic provisioning.
However, it is important to note that the gut microbiota can also compete with the host
for resources (184) or hurt the host when overproducing certain metabolites (185), so
increasing populations through provisioning will not always be beneficial.

Beyond nutritional contributions, the gut microbiota shapes the physiology of
many other host organ systems. The gut microbiota plays a crucial role in coloni-
zation resistance (186), it modulates the immune system (4), and it produces or
alters host production of signaling molecules, with effects on organs as distant as
the brain (187, 188). Manipulating the gut microbiota through diet to promote
these functions is less straightforward, at least when it comes to determining what
manipulations to use. Substrates necessary to promote the growth of species of
interest or to make the signaling molecules involved will need to be identified first
either through in vitro screens or through more-expansive measurements of function-
ing in diet intervention studies. The effects of dietary changes on immune functioning
or signaling may be more complicated than those on metabolism. For instance,
increasing mucosal secretions to support a physical barrier and colonization resistance
may involve any or all of the following: promoting growth of bacterial taxa (e.g.,
Firmicutes) that produce the short-chain fatty acid butyrate, whose uptake promotes
mucus secretion (45); limiting the growth of taxa that catabolize mucus (e.g., Bacte-
roidetes) (98); promoting the growth of mucin degraders (e.g., Verrucomicrobia) that
nevertheless stimulate robust barrier function (52); altering cross-feeding interactions
among gut bacteria at the mucus barrier (69); or fostering a complex gut microbiota
that interacts with various aspects of host biology to improve overall immunity.

More broadly, to support host health, it will be necessary to determine what a
healthy gut microbial community looks like. Of course, the answer will not necessarily
be the same for all individuals, but in the absence of a particular functional target,
general structural guidelines will be necessary before beginning interventions. Some
diets, for example, those including protein supplementation, could increase the overall
bacterial load (24, 189), but it remains unknown what constitutes an ideal bacterial load
for a human gut. Similarly, while low diversity is often considered a marker for
community imbalance, there is little observational or experimental evidence doc-
umenting ideal diversity levels or their functional implications (190). Better defining
of the goals in microbial manipulation will require answering these questions and
others, with particular attention paid to both the evolutionary context in which our
relationship to the microbiota arose as well as how contemporary contexts may
differ. Gut microbial profiles that were healthy historically and those most improv-
ing health among traditional subsistence, developing, and industrialized popula-
tions can all be expected to differ. Rational attempts to engineer the gut microbiota
via diet will need to appreciate these differences and to capitalize on existing
variation to accelerate the pace of discovery.
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