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Abstract

Overweight, obesity, undernutrition and their respective sequelae 
have devastating tolls on personal and public health worldwide. 
Traditional approaches for treating these conditions with diet, exercise, 
drugs and/or surgery have shown varying degrees of success, creating 
an urgent need for new solutions with long-term efficacy. Owing to 
transformative advances in sequencing, bioinformatics and gnotobiotic 
experimentation, we now understand that the gut microbiome 
profoundly impacts energy balance through diverse mechanisms 
affecting both sides of the energy balance equation. Our growing 
knowledge of microbial contributions to energy metabolism highlights 
new opportunities for weight management, including the microbiome-
aware improvement of existing tools and novel microbiome-targeted 
therapies. In this Review, we synthesize current knowledge concerning 
the bidirectional influences between the gut microbiome and existing 
weight management strategies, including behaviour-based and clinical 
approaches, and incorporate a subject-level meta-analysis contrasting 
the effects of weight management strategies on microbiota composition. 
We consider how emerging understanding of the gut microbiome alters 
our prospects for weight management and the challenges that must 
be overcome for microbiome-focused solutions to achieve success.
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studies have shown that metabolic phenotypes such as obesity, insu-
lin resistance, low-grade inflammation and/or elevated thermogen-
esis can be recapitulated in gnotobiotic animals through microbiota 
transplantation, suggesting causal impacts of the gut microbiome in 
energy metabolism12,13. Germ-free animals display physiological and 
immunological abnormalities compared with conventional mice14,15, 
including in phenotypes relevant to energy balance such as gut barrier 
function16, expression of enzymes involved in nutrient acquisition and 
utilization17 and gross physiology of the absorptive surface18. Human-
to-mouse microbiota transplants also do not perfectly replicate human 
donor composition19, and the resource-intensive nature of gnotobiotic 
animals often leads to underpowered experiments20. Despite these 
limitations, gnotobiotic animal models remain among our best tools 
for establishing cause and effect between microbiome composition 
and host energy balance.

Gnotobiotic studies have enabled us to establish that the gut 
microbiome causally modulates both sides of the energy balance 
equation. For instance, the gut microbiome regulates host energy 
intake via short-chain fatty acid (SCFA)-mediated hormone secre-
tion as well as direct microbial synthesis of neurotransmitters and 
hormone mimics that interact with the enteric and central nervous 
systems to regulate hunger and satiety (Box 1). The gut microbiome 

Introduction
Chronic energy imbalances impact one-third of the global human popu-
lation. By recent WHO estimates1,2, 1.9 billion adults and 380 million 
children worldwide are either overweight or obese, with obesity rates 
tripling since 1975. An additional 462 million adults and 200 million 
children are undernourished, with undernutrition contributing to 45% of 
deaths among children under 5 years of age. Individuals in developing 
countries and with low-socioeconomic status face disproportionately 
large burdens of undernutrition plus some of the fastest rising rates 
of overweight and obesity3. Related morbidities can simultaneously 
reduce productivity and increase medical expenses, reinforcing links 
between poverty and poor health. The consequences of energy imbal-
ance are therefore profound and long lasting for personal and public 
health, economic development and social justice.

One reason for the large and growing scale of this problem is that 
existing treatments have displayed limited long-term success. Over-
weight and obesity are typically treated with lifestyle interventions 
that induce a negative energy balance by lowering caloric intake and 
increasing physical activity, with obesity also treated pharmacologi-
cally and/or surgically. Such interventions often succeed in the short 
term, with most people who are overweight able to lose >5% of ini-
tial weight over a 6-month period4. However, there is almost invari-
ably weight regain as acute negative energy balance triggers metabolic 
adaptations favouring resource sparing and a lower resting metab-
olic rate5,6. Undernutrition is typically treated with ready-to-use 
therapeutic foods that aim to increase calorie and/or protein intake, 
antibiotics to combat co-infections and structural changes ameliorat-
ing food security. However, these interventions often prove insufficient 
to rectify undernutrition, particularly in young children. Compound-
ing the problem, undernutrition in early life can alter development that 
then predisposes individuals to metabolic comorbidities as adults7, 
with some effects even transmissible to subsequent generations8.

There remains a pressing need for new approaches to weight 
management. Recent transformative research has illuminated pro-
found and widespread influences of the gut microbiome on human 
physiology, including energy balance. The gut microbiome has proven 
sensitive to existing tools for weight management, including diet and 
exercise, drugs and surgical interventions such as gastric bypass. Criti-
cally, variations in the gut microbiome can also modulate the efficacy 
of interventions, suggesting that rational manipulation of the gut 
microbiome could facilitate weight management. Here, we outline the 
roles of the gut microbiome in energy metabolism, review bidirectional 
influences between the gut microbiome and existing tools for weight 
management and evaluate opportunities and challenges in the devel-
opment of microbiome-directed therapies targeting energy balance 
(Fig. 1). Although most research to date has focused on gut microbial 
contributions to overweight and obesity, where possible, we draw 
attention to parallel advances towards elucidating and manipulating 
the role of the gut microbiome in undernutrition, a promising new 
frontier for microbiome-targeted medicine.

Gut microbiome and energy metabolism
Germ-free mice reared in sterile conditions have lower adiposity com-
pared with conventionally raised mice or formerly germ-free mice 
colonized with murine or human gut microbiota9,10, despite germ-free 
animals eating more and expending less energy9. Similar results have 
been observed in mice harbouring antibiotic-ablated gut microbiotas11. 
Such studies have illustrated a strong, generally net-positive effect of 
microbial colonization on host energy status. Moreover, numerous 
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Fig. 1 | Reciprocal influences between the gut microbiome and key lifestyle 
and clinical approaches for weight management. Common weight-modulating 
interventions (blue) such as diet, exercise, drugs and surgery impact gut 
microbial structure and function, and these changes in the gut microbiome 
in turn alter intervention efficacy. Gut microbial contributions to weight 
management are targeted by emerging microbiome-directed therapies (green), 
including foods engineered to support the engraftment or growth of beneficial 
microorganisms, autologous faecal microbiota transplantation after weight 
loss and next-generation probiotics.
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increases dietary energy harvest by enhancing small intestinal lipid 
absorption and salvaging energy from carbohydrates and proteins 
escaping digestion in the small intestine via fermentation to SCFAs and 
other metabolites with residual caloric value (Fig. 2). The gut micro-
biome directs energy utilization by generating metabolic substrates 
accessible to select host tissues, regulating bile acid metabolism and 
influencing the expression of host genes controlling fatty acid uptake, 
lipolysis and thermogenesis (Fig. 3). Finally, the gut microbiome affects 
interactions between energy balance and inflammation by training 
systemic immunoreactivity during development, influencing gut 
barrier integrity and generating pro-inflammatory products such 
as lipopolysaccharide and flagellin with variable consequences for 
metabolic health (Box 2). As many of these observations derive from 
animal research, future studies in humans will be needed to establish 
translational relevance.

Whether manipulation of energy status by the gut microbiome is 
beneficial or detrimental depends, of course, on context. Studies at 
the positive and negative extremes of energetic balance have gener-
ally reported that the gut microbiome exacerbates host energetic 
phenotypes. For instance, the gut microbiome associated with hosts 
who are obese harbours structural and functional changes that increase 
the capacity for dietary energy harvest21. Similar weight-potentiating 
results have been found in dynamic states of positive energy balance, 
including weight rebound after caloric restriction22, relapsing obesity 
on reintroduction of obesogenic conditions after weight cycling23 and 
among women in the third trimester of pregnancy24. The gut micro-
biome can also exacerbate acute states of negative energy balance. 
For instance, the gut microbiome of children with kwashiorkor, a form 
of severe acute malnutrition, exhibits a juvenilized state that impairs 
nutrient uptake25,26. Likewise, the gut microbiome following Roux-en-Y 
gastric bypass (RYGB) surgery, a period when weight is shed quickly, 
has been shown to causally contribute to weight loss27. Similarly, gnoto-
biotic recipients of microbiomes conditioned on very-low-calorie 
diets (~800 kcal per day) had decreased adiposity versus recipients of 
pre-diet microbiomes28. Critically, gnotobiotic transplant recipients 
of kwashiorkor-associated and post-RYGB-associated microbiotas 
exhibited lower body mass and adiposity versus germ-free mice25,27, 
providing rare examples of microbiomes with net-negative influences 
on host energy status.

However, the gut microbiome does not always act to exacerbate 
energy imbalance. Indeed, under at least some conditions, the host–
microbial system exhibits a form of dynamic energetic buffering in 
which short-term reductions in energy uptake by the host foster a 
microbiome with potentiated contributions to energy status. For 
instance, in mice fed nutrient-matched raw and cooked diets known 
to differ in ileal digestibility, the lower digestibility raw diet led to 
weight loss overall but fostered a gut microbiome that itself promoted 
increased host energy status, as evidenced by greater weight and adi-
posity gains among gnotobiotic recipients of microbiotas conditioned 
on raw diets29. The specific conditions under which the gut microbiome 
exacerbates versus buffers host energy status remain unclear, but 
constitute a high-priority area for research because such conditions 
reveal levers for therapeutic manipulation of the gut microbiome.

Another challenge in connecting microbial signatures to meta-
bolic phenotypes is that there could be present consequences of past 
microbiome states. Studies in mice and humans suggest that disrup-
tion of the gut microbiome in early life through pulsed therapeutic or 
chronic subtherapeutic doses of antibiotics confers increased risks 
of adult adiposity11. Metabolic consequences of disrupted early-life 

gut microbiomes were found even when microbiome signatures ulti-
mately rebounded to become indistinguishable from controls30, 
suggesting that some metabolic contributions of the microbiome 
will be challenging to track. The proximate mechanisms linking dis-
rupted early-life microbiomes with adult host energetic phenotypes 
await elucidation. For instance, it remains unknown whether the 
excess energy that predisposes to obesity comes from increased food 

Box 1

Influences of the gut 
microbiome on energy intake
Microbial metabolites can alter feeding behaviour, as exemplified 
by the exogenous delivery of short-chain fatty acids (SCFAs) 
reducing appetite173,174. These effects are thought to be mediated 
through the gut–brain axis, a signalling network linking the central 
and enteric nervous systems. Within the gut, SCFAs activate 
GPR41 and GPR43 receptors on enteroendocrine l-cells, triggering 
the release of glucagon-like peptide 1 and peptide YY175,176. These 
hormones promote satiety by activating endocrine receptors in 
the hypothalamus and nucleus of the solitary tract, which process 
information about nutritional status. SCFAs may also affect energy 
intake by signalling through the vagus nerve174 or, in the case of 
acetate, by crossing the blood–brain barrier and inducing the 
expression of anorexia-promoting genes177. Many gut bacteria 
synthesize peptide mimics of hormones regulating satiety and 
hunger, such as leptin and insulin178. Gut microorganisms can also 
synthesize neurotransmitters such as GABA, dopamine, acetylcholine 
and noradrenaline179, as well as affect endogenous levels of serotonin 
in the intestine180 and dopamine, noradrenaline and serotonin in the 
brain181. These neurotransmitters can affect energy intake through 
their roles in gut motility, satiation and food reward.

Whether the gut microbiome impacts food preferences in 
humans remains unknown, but such evidence is emerging among 
animal models. Compared with conventional mice, germ-free mice 
have higher expression of intestinal receptors for sweet taste and 
increased sucrose intake182, as well as increased preference for fat, 
a result coupled to increased expression of oral fatty acid receptors 
and decreased expression of satiety peptides183. Faecal microbiota 
transplants from diet-induced obese mice into germ-free recipient 
animals were sufficient to transfer the blunted preference for high-
fat high-sugar diets observed among the donors and were associated 
with lower markers of food reward184. Most strikingly, colonization of 
germ-free mice with gut microbiota from herbivorous, omnivorous 
or carnivorous wild rodents affected macronutrient intake, with 
recipients of a herbivorous microbiome selecting diets with higher 
protein versus carbohydrate185, potentially because protein is 
limiting on a plant-based diet. The colonic microbiota of herbivores 
is also nitrogen limited, raising the possibility that microorganisms 
manipulate host-feeding behaviour for their own benefit186. 
Conversely, fruitflies fed an essential amino acid-deficient diet 
prefer foods containing microbial taxa capable of ameliorating 
the deficiency, raising the possibility that hosts also harbour some 
capacity to select for beneficial microbial functions via diet187.
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intake, decreased activity, a lower resting metabolic rate or reduced 
allocation to immunity or reproduction. Similarly, studies in mice 
and humans suggest that signals of delayed gut microbial matura-
tion can precede the onset of malnutrition in infants31. What impairs 
gut microbial maturation is unknown, but decompartmentalization 
and small intestinal bacterial overgrowth have been proposed as 
contributing factors32.

Remarkably, metabolic programming by the gut microbiome may 
even precede birth, as illustrated by a recent study in mice showing 
that SCFAs from the maternal microbiome cross the placental barrier 
and bind to GPR41 and GPR43 receptors in the developing embryo, 
affecting downstream tissue development33. Pups born to mothers 
harbouring microbiomes deficient in SCFA production owing to germ-
free status, antibiotic treatment or low-fibre diets had higher risks 
of metabolic syndrome on encountering high-fat diets as adults than 
did pups born to mothers harbouring SCFA-producing microbiomes. 
Critically, pups born to both SCFA-deficient and SCFA-producing 
mothers were surgically delivered and cross-fostered, so this differ-
ence was not attributable to vertical inheritance of an SCFA-producing 
microbiome. Rather, it was the embryonic exposure to SCFA from the 

maternal microbiome that determined developmental fate and the 
future interaction of metabolic phenotype with diet. Similarly, recent 
data implicate fetal exposures to microorganisms34 or vertical inherit-
ance of perturbed maternal microbiomes35 in shaping immune devel-
opment. Although effects have not yet been investigated in humans, 
these murine data suggest that the microbiome could be a vehicle for 
intergenerational modulation of the efficacy of weight management 
interventions.

Gut microbial influences on energy metabolism can cast shadows 
over the life course and affect organs far beyond the gut (Fig. 4). The 
pleiotropy inherent in these diverse mechanisms helps to explain 
why it can be difficult to predict a priori the effect of gut microbial 
perturbations on host metabolic responses.

Diets and weight management
Cross-sectional microbiome-wide association studies have pro-
vided clear evidence that diet is an important determinant of gut  
micro biome36,37. Large cohort studies have demonstrated links 
between diet and microbiome composition and diversity38,39. Owing 
to the high degree of interindividual variation observed in human 
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Fig. 2 | Gut microbiome enhances dietary energy harvest. Macronutrients 
available for breakdown by host enzymes are digested in the small intestine. Small 
intestinal macronutrient absorption supplies the host with energy predictable by 
biochemistry (carbohydrate, ~4 kcal g−1; protein, ~4 kcal g−1; fat, ~9 kcal g−1). Dietary 
fat is readily absorbed in the proximal small intestine, and although fat digestion 
canonically depends exclusively on host enzymes, evidence of gut microbiome 
contributions to small intestinal lipid absorption in animal models152,153 and 
host–microbial interactions in lipid emulsification154 challenge this view. 
By contrast, it is well accepted that microorganisms augment carbohydrate 
and protein digestion. The fractions of carbohydrate and protein digested in the 
small intestine vary with macronutrient structural form (for example, higher for 
sugar versus fibre), meal composition (for example, higher for fibre-poor versus 
fibre-rich meals), thermal processing (for example, higher for cooked foods) 
and physical processing (for example, higher for smaller particle sizes)155,156. 
Nutrients that escape small intestinal digestion undergo fermentation by 
the colonic gut microbiota, producing an array of metabolites with energetic 
implications. The gut microbiome produces branched-chain fatty acids (BCFAs) 
from dietary valine, leucine and isoleucine, plus other organic acids such as 
lactate and succinate. However, undigested carbohydrates are the principal 

fuel for microbial fermentation, from which the gut microbiome generates 
the short-chain fatty acids (SCFAs) acetate, butyrate and propionate. These 
SCFAs are absorbed by the host and contribute to energy metabolism in diverse 
tissues, with acetate supporting muscle and brain, butyrate supplying up to 
60–70% of the energetic needs of the colonic epithelium and propionate used 
in hepatic gluconeogenesis157. Energy returns from SCFAs have been estimated 
at ~1.5 kcal g−1 (ref.  157), less than half the rate for carbohydrates digested in the 
small intestine. Thus, more energy is harvested by the host when nutrients are 
digested directly versus fermented. Nevertheless, SCFAs account for ~5–10% of 
daily energy requirements in industrialized populations158 and almost certainly 
a greater fraction in populations with minimally processed and/or fibre-rich 
diets157. Although SCFAs were long appreciated primarily as vehicles for energy 
salvage, recent research has shown that SCFAs possess potent signalling functions 
that modulate energy intake (dashed arrow; see also Box 1), energy utilization 
(Fig. 3) and inflammation (Box 2). These pleiotropic effects help explain why 
studies of high-fat diets with or without SCFA supplementation have reported 
inhibitory effects of SCFA on weight gain159,160. Host metabolites, including bile 
acids (Fig. 3) and immune factors (Box 2), also interact bidirectionally with the 
gut microbiome and influence its contributions to energy balance.
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microbiome studies, longitudinal analyses of short-term interven-
tions have been particularly powerful in elucidating gut microbial 
responses to diet. Studies using this approach have addressed animal-
based and plant-based diets40, high-fat low-fibre and low-fat high-fibre 
diets41, very-low-calorie diets28 and high-fibre whole-food diets42 and 
have observed diet-induced changes in as little as 1–2 days that were 
reversible after diet cessation28,40 (Supplementary Table 1). Such diet-
induced plasticity has been linked to success in sustained weight loss 
interventions43, highlighting the promise of dietary manipulation of 
host–microbial interactions for weight management.

Dietary properties shaping gut microbial contributions 
to weight management
Weight management diets frequently manipulate dietary macro-
nutrient content, as exemplified by low-carbohydrate, low-fat 
or high- protein programmes. There may be a false polychotomy 
between these diets as dietary composition is a zero-sum game, 

with a reduction in one proportion necessitating the rise in another. 
For instance, many studies have focused on dietary fat as a driver of 
microbial outcomes when, in fact, these diets have also differed in 
sugar and/or fibre content as well as whole-food versus semi-purified 
states44,45. Potential pitfalls of focusing on a given macronutrient are 
highlighted by recent reports that microbial responses to high-fat 
ketogenic diets and high-fat non-ketogenic diets are distinct, with 
ketogenic diets resulting in a loss of bifidobacteria, potentially owing 
to antimicrobial effects of ketones46. Moreover, common weight 
management diets are typically not isocaloric, but drive a reduction 
in caloric intake that itself can elicit similar clinical outcomes47 and 
microbial responses (Supplementary Table 1).

However, some discrete properties of diet have received attention 
for their effects on the gut microbiome. Dietary fibre delivers ferment-
able substrate to the colon, enriching for microorganisms synthesizing 
carbohydrate-active enzymes and upregulating SCFA production48. 
Indeed, chronic low-fibre consumption led to extinction of these taxa 
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Fig. 3 | Gut microbiome modulates energy utilization. Signals from the 
gut microbiome act on adipocytes to direct whether available calories are 
allocated to storage or thermogenesis. Early animal experiments showed that 
gut microbial colonization leads to increased triglyceride storage in adipocytes 
through intestinal suppression of a circulating lipoprotein lipase (LPL) inhibitor, 
fasting-induced adipocyte factor (FIAF), leading to high cellular uptake of fatty 
acids9. Short-chain fatty acids (SCFAs) also affect the metabolic state of adipose, 
intestinal and hepatic tissue. Although definitively linking SCFA production to 
tissue status is challenging owing to inconsistent outcomes and designs across 
studies, intestinal utilization of SCFA by microorganisms and host, collateral 
changes in the microbiome and pleiotropic effects of SCFAs on physiology12,161, 
many studies have found acetate, butyrate and propionate to exert differential 
effects. For instance, lipolysis in energy-storing white adipose tissue (WAT) was 
inhibited and fat accumulation promoted by acetate and propionate162,163, whereas 
butyrate promoted lipolysis and fatty acid oxidation164. Butyrate enhanced 
thermogenesis in energy-consuming brown adipose tissue165, whereas acetate 
and acetate-rich SCFA mixtures increased WAT browning160. Propionate promoted 
gluconeogenesis in the liver166 and intestine167, whereas hepatic acetate has been 
reported to reduce lipogenesis, limit fat accumulation, increase the expression 

of thermogenesis and fatty acid oxidation genes and reduce inflammation168,169. 
Moreover, a given SCFA compound can influence physiology in opposing ways 
in different tissues, as exemplified by acetate or butyrate supplementation 
increasing GPR43 expression in adipose tissue while reducing it in the colon160. 
Such differential effects raise the possibility that metabolic states could be 
manipulated via delivery of specific SCFAs. Gut microbial transformations of BAs 
also regulate energy metabolism. Gut microorganisms convert host-produced 
primary BAs (1° BAs) into secondary bile acids (2° BAs) via deconjugation and 
dehydroxylation. BAs transformed by the gut microbiota possess diverse 
signalling functions. For instance, deconjugated primary and secondary BAs are 
principal ligands for the nuclear farnesoid X receptor (FXR), a transcription factor 
with key regulatory roles in BA, cholesterol, lipid and glucose metabolism170. 
Through FXR signalling, microbial deconjugation of primary BAs can decrease 
hepatic expression of CYP7A1, the rate-limiting enzyme in primary BA synthesis171, 
with potential downstream effects on lipid absorption in the small intestine154. 
Additionally, gut microbial BA metabolism has a critical role in regulating 
thermogenesis. Notably, the secondary BA lithocholic acid is a high-affinity 
agonist of the G protein-coupled receptor TGR5, inducing both WAT and brown 
adipose tissue thermogenesis via upregulation of uncoupling protein 1 (UCP1)172.
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among mice49. In recent human studies, consumption of high-fibre 
diets increased microbiome-derived glycan-degrading enzymes50 
or known fermentative taxa42, although effects on SCFA production, 
microbiota diversity and host phenotype varied42,50. Use of dietary 
fibre as an adjuvant to pharmacological treatment with acarbose, an 
α-glucosidase inhibitor used for type 2 diabetes, promoted growth 
of SCFA-producing microorganisms and decreased HbA1c levels, a 
biomarker of blood glucose51. Yet, effects of fibre supplementation 

have not been uniformly beneficial. For instance, administration of 
arabinoxylan or long-chain inulin, isolated fibres found in common 
over-the-counter weight-loss supplements, had differential effects 
on gut microbial and host phenotypes, with arabinoxylan lowering 
cholesterol and inulin promoting growth of bifidobacteria, but high 
inulin doses (30 g per day) eliciting inflammation and elevated liver 
enzymes52. Isolated fibre supplements typically target growth of bifi-
dobacteria and lactobacilli53 and therefore may not replicate the effects 
of a diet rich in diverse polysaccharides. However, because ferment-
able fibres are differentially capable of stimulating SCFA production54, 
and SCFAs differ in their biological effects on energy metabolism at 
distal sites (Figs. 3 and 4 and Box 1), precision fibre interventions could 
potentially be used to engineer the composition of the SCFA pool to 
alter energy metabolism55.

Additives such as emulsifiers and non-caloric artificial sweeteners 
(NAS) have become ubiquitous in industrialized diets. Although gener-
ally recognized as safe, recent studies have demonstrated that these 
compounds impact the gut microbiome and its contributions to energy 
metabolism56–58. Emulsifiers such as carboxymethylcellulose and poly-
sorbate 80 have been observed to disrupt the intestinal mucosa, lead-
ing to microbiota encroachment, low-grade inflammation, adiposity 
and high blood glucose levels that are transmissible via microbiota 
transplantation58; however, relatively few well-powered studies are 
available to confirm these findings in humans56. Similarly, studies 
in animals and humans have indicated that NAS compounds such as 
saccharin and sucralose promote glucose intolerance, with dosing in 
the acceptable daily intake range leading to microbiota-transmissible 
weight gain, metabolic abnormalities and inflammation57,59–61. However, 
these results were not corroborated in follow-up animal experiments62 
or human studies involving saccharin and sucralose62,63. Such lack 
of reproducibility between groups and small human study sample 
sizes (<20 parti cipants per intervention group)57,61,62 indicates that 
further investigation and adequately powered double-blind, placebo-
controlled studies will be required to establish any deleterious 
effects of NAS.

Fermented foods and probiotics are frequently suggested as pro-
moting metabolic health, but empirical evidence is limited. Direct 
comparison of results between different fermented food and probiotic 
intervention studies is often difficult owing to variation in nutrient 
content and preparation, as well as the varying species and strain 
compositions used. Diets enriched in various fermented foods — for 
example, cheese, kefir, yogurt and kombucha — were recently shown to 
increase gut microbiome diversity and to reduce both pro-inflammatory 
and anti-inflammatory cytokines in serum50. However, owing to the 
lack of dietary standardization, it remains unclear which functional 
foods and their respective microorganisms were responsible for these 
effects. The immunomodulatory capabilities of conventional lactic 
acid bacteria-based probiotics are well documented64, and there is 
emerging evidence for beneficial effects on glucose homeostasis65,66. 
However, evidence for their efficacy in weight modulation is limited, 
with few high-quality studies available67,68. Yogurt consumption has 
been associated with lower weight, weight gain, body mass index, waist 
circumference and body fat in a systematic review, but cause–effect 
relationships remain unclear owing to confounding variables69. Treat-
ment for 12 weeks with Lactobacillus sakei, a probiotic isolated from 
kimchi, led to reductions in body fat and waist circumference but no 
effects on body weight or body mass index in a recent randomized, 
double-blind, placebo-controlled study in humans with obesity70. 
Despite robust product marketing, to our knowledge, no high-quality 

Box 2

Interactions of the gut 
microbiome with low-grade 
inflammation
Chronic low-grade inflammation, characterized by aberrant 
cytokine production and persistent inflammatory signalling, is a 
central feature in metabolic syndrome. Unlike acute inflamma-
tion, which is a response to tissue injury, low-grade inflammation 
principally arises owing to metabolic surplus188. The gut microbi-
ome has a key role in modulating low-grade inflammation. Bacte-
rial exposures in the first years of life are critical for establishing 
systemic immunoreactivity, a topic explored in depth in recent 
reviews189,190. Throughout life, interactions between bacterial 
products (microbe-associated molecular patterns) and innate 
pattern-recognition receptors expressed in the intestinal epithe-
lium, such as Toll-like receptors and NOD-like receptors, activate 
signalling pathways resulting in immune cell activation and 
inflammation. Although the mechanistic relationship between 
inflammation and energy metabolism remains incompletely 
understood188, not all microbiota-dependent inflammatory 
responses have negative consequences for metabolic health. 
For instance, although exogenous delivery of lipopolysaccha-
ride in mice triggered low-grade systemic inflammation eliciting 
obesity and insulin resistance191, knockout of flagellin-sensing 
Toll-like receptor 5 in mice promoted obesity and insulin resist-
ance with effects partially transmissible to wild-type gnotobiotic 
mice via microbiota transplantation192.

Bacteria and pro-inflammatory bacterial compounds often 
trigger low-grade inflammation by entering circulation via faults in 
gut mucosal and epithelial cell barriers, a state colloquially referred 
to as ‘leaky gut’193. Critically, the gut microbiome modulates gut 
barrier integrity. Gut microbiota conditioned on high-fat diets or 
dietary emulsifiers can transmit deficient mucosal phenotypes 
through transplantation, including reduced mucosal barrier 
thickness, bacterial encroachment towards epithelial cells and 
increased translocation of bacterial products into circulation194. 
By contrast, many bacterial taxa have been reported to have 
protective effects on gut barrier integrity. For instance, the mucin-
degrading bacterium Akkermansia muciniphila has been shown 
to promote increased mucus barrier thickness and reduced 
translocation of lipopolysaccharide into circulation, contributing 
to reductions in high-fat diet-induced adiposity, adipose tissue 
inflammation and insulin resistance12.
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evidence currently links kombucha to either immune or metabolic 
benefits in humans71.

Specific diets and gut microbial contributions to weight 
management
Diet is a complex variable with many dimensions affecting microbiome 
composition, including caloric content, macronutrient and micronutri-
ent load, preparation and timing of feeding. Although each dimension 
can be studied in isolation in controlled human or animal studies, weight 
management diets typically incorporate combinations of these vari-
ables, making it challenging to decipher their respective contributions. 
This is further complicated by difficulties inherent in the direct compari-
son of microbiome data across studies and in comparing microbiome 

signatures across individuals. To quantify high-level effects of weight 
management interventions on the human gut microbiota, we used a 
previously published method44 to compare intra-individual microbiota 
changes in 14 longitudinal studies addressing common weight manage-
ment interventions including caloric restriction, nutrient modulation, 
exercise and RYGB surgery (Supplementary Methods). Studies were 
selected on the basis of design and data availability (Supplementary 
Table 2). Consistent with previous reports, we found that α-diversity was 
neither a robust nor reproducible indicator of intervention. However, 
gut microbiota composition was reproducibly altered by weight man-
agement intervention across participants in 12 of 14 studies (Fig. 5a). 
An important consideration in interpreting this result is that effects 
of weight management intervention are unlikely to outweigh effects of 

Mediation of hunger and satiety
• Production of SCFA
   -Ac: crosses BBB, anorectic e	ect
   -Bu/Pr: stimulates GLP1/PYY secretion
• Production of neurotransmitters
• Modulation of host neurotransmitter 

production
• Production of hormone mimics
• Influence on food reward pathways?

Modulation of energy allocation
• Promotion of triglyceride storage via FIAF
• Production of SCFA
   -Ac/Pr: inhibits lipolysis in WAT
   -Ac/Pr: promotes fat accumulation in WAT
   -Ac: promotes WAT browning
   -Bu: promotes lipolysis in WAT
   -Bu: promotes fatty acid oxidation in WAT
   -Bu: promotes thermogenesis in BAT
• Production of secondary bile acids that 

induce thermogenesis in both WAT and BAT

Interactions with low-grade inflammation
• Source of pro-inflammatory compounds  

(for example, LPS, flagellin)
• Modulation of mucosal barrier thickness
• Encroachment towards epithelial cells
• Translocation of microorganisms and 

products

Enhancement of dietary energy harvest
• Fermentation of indigestible nutrients
• Production of SCFA
   -Ac: used by muscle and brain
   -Bu: primary metabolic fuel for colonocytes
   -Bu/Pr: promotes intestinal gluconeogenesis
   -Pr: substrate for hepatic gluconeogenesis

Influences on gut barrier integrity
• Production of SCFA
   -Bu: primary metabolic fuel for colonocytes
   -Bu/Pr: promotes intestinal gluconeogenesis
• Modulation of tight junction expression
• Mucin foraging
• Stimulation of host mucin production
• Source of pro-inflammatory compounds  

(for example, LPS, flagellin)

Manipulation of liver metabolism
• Production of SCFA
   -Ac: reduces hepatic lipogenesis
   -Ac: limits hepatic fat accumulation
   -Pr: substrate for hepatic gluconeogenesis
• Inhibition of primary bile acid synthesis via 

FXR
• Deconjugation of primary bile acids
• Production of secondary bile acids

Impacts on development
• Modulation of tissue growth
• Promotion of immune development
• Calibration of inflammatory tone

Fig. 4 | Mechanisms of gut microbial influence on host energy status. The gut 
microbiome contributes to host energy metabolism through early-life influences that 
shape metabolic and immune physiology, as well as dynamic influences throughout 
life on hunger and satiety, dietary energy harvest, bile acid metabolism and 
allocation of available energy to storage versus thermogenesis (Box 1 and Figs. 2  
and 3). In addition, the gut microbiome modulates interactions between energy 

metabolism and low-grade inflammation through its calibration of inflammatory 
tone in early life, production of pro-inflammatory compounds and modulation 
of gut barrier integrity (Box 2). Ac, acetate; BAT, brown adipose tissue; BBB, blood–
brain barrier; Bu, butyrate; FIAF, fasting-induced adipocyte factor; FXR, farnesoid 
X receptor; GLP1, glucagon-like peptide 1; LPS, lipopolysaccharide; Pr, propionate; 
PYY, peptide YY; SCFA, short-chain fatty acid; WAT, white adipose tissue.
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interindividual variation. Although not always reported, we determined 
that intervention explained 0.6−9.0% of variation in gut microbiota 
composition, whereas interindividual variation explained 55.2−87.0%, 
depending on the study design and distance metric.

Intervention durations varied widely in our dataset, spanning 
3 days to 12 weeks. Notably, we did not detect a significant correlation 

between effect size and intervention duration, regardless of distance 
metric (rho = −0.09 to 0.2, all P > 0.43, Spearman correlation), reinforc-
ing the idea that even short-term lifestyle interventions can repro-
gramme the gut microbiome40,72. Interstudy comparison of effect sizes 
revealed that RYGB surgery exhibited the greatest effect on microbi-
ome composition, followed closely by caloric restriction, nutrient 
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Fig. 5 | Meta-analysis of the effects of weight management interventions on 
gut microbiome composition. a, Interventions have variable magnitudes of 
effect on the gut microbiome as measured by the proportion of variation in gut 
microbiome composition attributed to intervention within each study, a metric 
that is robust to how differences in microbiome composition are measured 
across studies. The panel illustrates results for several of the most common 
distance metrics used to characterize sample-to-sample differences, including 
Bray–Curtis dissimilarity, Aitchison distance, Unweighted UniFrac distance 
and Weighted UniFrac distance. Differences in the results obtained for different 
distance metrics reflect their variable treatments of relative abundance and 
phylogenetic relationships. b, Surgical interventions and dietary interventions 
tend to display greater effects than exercise in modulating the microbiome, 
as measured by the proportion of variation explained. The panel illustrates an 
analysis of Unweighted UniFrac distances, but similar results were observed 
using other common distance metrics. Caloric modification diets were inclusive 
of intermittent fasting and diets aiming to reduce caloric intake, whereas 

nutrient modulation diets included diets involving intentional rebalancing 
of macronutrients (for example, low-carbohydrate, low-fat, high-protein or 
ketogenic diets) and Mediterranean diets. c, To determine similarity in gut 
microbial response to various diets, a machine learning model was fit to the 
data. This model demonstrated that high-protein, Mediterranean and low-
gluten diets have distinct, readily distinguishable effects on the gut microbiome 
(indicated by yellow squares). By contrast, the effects of intermittent fasting, 
ketogenic and vegetarian diets were difficult to separate from general caloric 
restriction, and the effects of low-carbohydrate and low-fat diets were difficult 
to distinguish from each other (indicated by blue-green squares). d, Analysis 
of organisms (operational taxonomic units (OTUs)) affected by weight 
management interventions and ordered horizontally by their phylogenetic 
relatedness revealed conserved effects of diet at the phylum level. Specific 
phylum-level associations are listed to the right of the figure. RYGB, Roux-en-Y 
gastric bypass. Details of the studies contributing to this meta-analysis are given 
in Supplementary Table 2 and Supplementary Methods.
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modulation and finally exercise (Fig. 5b). These classifications are 
necessarily imperfect as RYGB surgery in part targets caloric restriction, 
nutrient modulation can affect caloric load and exercise often alters 
diet. A subanalysis of dietary interventions revealed that intermittent 
fasting, prolonged caloric restriction and ketogenic diets had the 
greatest effects on gut microbiota composition, with diets identified 
as vegetarian or low gluten having the least effects (Fig. 5a). To under-
stand which diets elicited similar effects, we used machine learning 
methods to predict diet type from diet-induced change in gut microbial 
composition (Supplementary Methods). We found that the model 
struggled to differentiate intermittent fasting, ketogenic and vegetar-
ian diets from caloric restriction, whereas high-protein, Mediterranean 
and low-gluten diets were easily distinguished (Fig. 5c). Phylogenetic 
examination of the microorganisms responsive to intervention (Fig. 5d) 
demonstrated both high-level signals, such as increases in Proteobac-
teria after RYGB surgery or in Bacteroides spp. after intermittent fasting 
or low-carbohydrate diets, but idiosyncrasy within and between diets. 
Although comparisons should be interpreted cautiously as the number 
of available studies for any given intervention is low, and the nature of 
sequencing does not capture reductions in microbiota absolute abun-
dance as previously identified for very-low-calorie diets28, these obser-
vations offer a first glance into the comparative gut microbial effects 
of weight management interventions.

Diet outcomes
One of the great opportunities in translating microbiome science 
lies in using the microbiome as a prognostic tool. The high degree 
of interindividual variation in short-term and long-term response to 
weight loss interventions has been linked to various behavioural and 
biometric predictors, but the microbiome may offer new biomarkers 
for intervention efficacy and long-term weight maintenance. Proof-of-
principle data in mice demonstrated that classifier models exploiting 
microbiota composition predicted weight regain in a ‘yo-yo’ dieting 
paradigm with high accuracy23. Specific microbial taxa have also been 
linked to diet efficacy. For instance, baseline levels of Prevotella spp. 
predicted 6-week weight loss on a high-fibre, whole-grain diet73, and 
higher gut microbiota diversity and relative abundance of taxa such 
as Ruminococcaceae spp. and Lachnospiraceae spp. predicted weight 
gain over a 10-year period among healthy females from the TwinsUK 
cohort74. In a recent study, it was determined that ~22–38% of change 
in body fat during weight loss intervention could be explained by the 
baseline microbiota, with certain Clostridia and Parabacteroides spp. 
indicative of increased loss75. Interestingly, elevated baseline micro-
biota diversity has been correlated with lower fat loss, reinforcing 
the idea that the pursuit of high gut microbiota diversity is unlikely 
to be uniformly beneficial76,77. Microbiome composition, when inte-
grated with anthropometric and lifestyle indicators, was also shown to 

Glossary

α-Diversity
Diversity of microbial taxa within a given 
sample; distinct from β-diversity, which 
indexes differences in microbiome 
composition between samples.

Energy balance
The balance between energy intake 
and expenditure crucial in weight 
maintenance.

Faecal microbiota 
transplantation
(FMT). The experimental or therapeutic 
administration of preparations of 
faecal material intended to transfer 
microbiota-mediated effects 
to a recipient.

Germ-free animals
Animals lacking resident 
microorganisms, which may be derived 
through sterile surgical birth followed 
by rearing and propagation under 
strictly sterile conditions.

Gnotobiotic mice
Animals born without microorganisms 
(that is, germ-free) that may be 
colonized to study effects of microbial 
colonization on host physiology.

Gut barrier
Multilayered structure (consisting of 
mucus with embedded antimicrobial 
peptides and secretory IgA, epithelial 
cells and their cell-to-cell junctions, 
and the immune element-rich lamina 
propria) that simultaneously allows 
for nutrient absorption while restricting 
contact with the gut microbiota and 
its products.

Ketogenic diet
A protein-adequate diet marked 
by high-fat and very-low (<10% kcal) 
carbohydrate intake that forces the 
metabolism of stored fat into ketones.

Low-grade inflammation
Immunometabolic state, marked 
by the chronic production of 
low-level inflammatory factors, 
that bidirectionally potentiates 
metabolic disease.

Mediterranean diet
A diet emphasizing plant-based 
ingredients and unsaturated fats 
(mainly olive oil), moderate amounts 
of seafood and poultry and minimal 
amounts of refined carbohydrates 
and red meat.

Meta-analysis
Analysis using the data derived from 
multiple studies to achieve greater 
sample size and uncover reproducible 
findings.

Metabolic syndrome
A cluster of physiological conditions 
— including excess visceral fat, high 
fasting glucose, high triglycerides, 
low HDL cholesterol and/or high blood 
pressure — that can together increase 
the risk of diabetes, heart disease and 
stroke.

Microbiome
The genetic content and products 
of a community of microorganisms.

Microbiome diversity
Measurements of the number of 
microorganisms/genes present within 
an individual and/or how evenly they 
are distributed.

Microbiome-wide association 
studies
Studies employing a statistical 
approach that mines microbiome 
and host phenotype datasets to 
identify specific microbial taxa or 

microbial genes that are associated 
with specific host traits; also known 
as metagenome-wide association 
studies.

Microbiota
A community of microorganisms 
inclusive of bacteria, fungi, viruses, 
archaea and protists.

Roux-en-Y gastric bypass
(RYGB). Bariatric surgery promoting 
weight loss, in which a small pouch 
of stomach is connected to the 
jejunum, thereby restricting food 
intake and bypassing digestion 
in the duodenum.

Short-chain fatty acid
(SCFA). Microbial metabolite resulting 
from fermentation with wide-ranging 
effects on host physiology.

Undernutrition
A state of deficient energy intake 
characterized by stunting (low height-
for-age), wasting (low weight-for-
height) and/or underweight (low weight- 
for-age) that increases the risk of 
morbidity and mortality, especially 
in children.
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improve the prediction of postprandial glycaemic response to a given 
meal, with Proteobacteria linked to poor response78. Individuals differ 
widely in their responses to diet79, and determinants of this variation 
have remained elusive. Such studies offer the tantalizing notion that 
diets could be tailored to the microbiome of an individual to maximize 
clinical efficacy.

Physical activity and weight management
Similar to diet, physical activity is a key lever for weight management 
that impacts the gut microbiome through diverse pathways. Although 
diet can shape the gut microbiome directly by altering the luminal 
nutritional milieu, effects of physical activity on the gut microbiome 
are mostly indirect. Correspondingly, effect sizes of physical activ-
ity on gut microbiota composition are typically lower than those 
of diet80–82 (Fig. 5b).

Gut microbiota composition is sensitive to both acute and chronic 
physical activity in rodents83,84. However, gut microbial signatures of 
exercise have differed widely across studies, presumably owing to 
differences in exercise type and intensity, diet, species and/or strain, 
age and other elements of study design. Even voluntary wheel running 
versus forced treadmill exercise differentially alters the gut micro-
biome in mice84. Relatively reproducible among effects reported to 
date is that of voluntary wheel running on the gut microbial capacity 
for butyrate production, including higher abundances of butyrate-
producing taxa and/or increased faecal or caecal concentrations of 
butyrate in exercised animals versus sedentary controls85.

The gut microbiome also differs between active and sedentary 
humans81,86–88. The gut microbiome of human endurance runners and 
more sedentary controls differs at baseline and dynamically changes 
within individual runners during a distance race87,88, with enrichments 
of Veillonella87 and Coriobacteriaceae88 taxa of particular interest. Simi-
larly, elite rowers and ultramarathoners experience changes in the 
microbiome before versus after exercise87, rugby players exhibit distinct 
gut microbial taxonomic and functional signatures compared with more 
sedentary individuals89,90 and modest differences in the microbiome 
have been detected between professional and amateur competitive 
cyclists91. Several studies have reported correlations between gut  
microbiome structure and function and cardiorespiratory fitness, as 
assessed by oxygen uptake (V

.
O2max or V

.
O2peak)92,93. In addition, several  

studies have found increases in SCFA concentrations and/or butyrate-
producing taxa in athletes compared with more sedentary individuals90 
and in individuals with higher versus lower cardiorespiratory fitness93, 
consistent with data from animal models suggesting that exercise 
enriches the gut microbiome for SCFA production. A recent study 
reported that the absolute abundance of SCFA-producing Bacteroides 
uniformis was correlated with 3,000-m race time, and dietary interven-
tions targeting its abundance led to increased performance that could 
be replicated by administration of B. uniformis to mice94. Similarly, 
individuals with prediabetes who harboured microbiotas with higher 
basal capacity for SCFA production saw greater improvements in gly-
caemic response after a 12-week high-intensity exercise intervention95. 
Moderate activity also seems to affect gut microbiota composition in 
similar ways, with active women harbouring increased levels of two 
butyrate producers, Faecalibacterium prausnitzii and Roseburia hominis, 
and metabolism-modulating Akkermansia muciniphila96,97 (Box 2).

However, the extent to which these differences are confounded 
by body composition and other lifestyle factors such as diet remains 
unclear81,88,98. Indeed, increased daily protein intake of elite rugby 
players versus more sedentary individuals accounted for many of the 

observed intergroup differences in gut microbiota composition89. 
The handful of studies incorporating rigorous dietary control have 
reported differential and plastic gut microbial responses to physical 
activity. For instance, among previously sedentary adults exposed to 
6 weeks of supervised, endurance exercise with a standardized 3-day 
dietary intervention implemented before sample collection, changes 
in the gut microbiome at intervention end-point differed on the basis 
of the baseline host phenotype86. Exercise increased faecal butyrate 
and acetate concentrations and the relative abundance of butyrate-
producing taxa in participants who were lean but not in participants 
who were obese. Similarly, exercise increased Faecalibacterium spp. 
in participants who were lean but had opposite effects in participants 
who were obese. Changes in the microbiome at the intervention end-
point were largely reversed following a 6-week sedentary washout 
period, suggesting that the gut microbiome responds dynamically to 
exercise input.

The mechanisms through which physical activity affects the gut 
microbiome have not been elucidated, but physical activity alters the 
gut luminal environment in diverse ways. For instance, exercise alters 
cytokine expression in intraepithelial lymphocytes99, which have a criti-
cal role in mediating host–microbial interactions within the intestinal 
mucosa100. Exercise may have hormetic effects on gut barrier integrity, 
with intensive exercise leading to short-term increased permeability101 
but routine exercise promoting reduced permeability, as evidenced by 
highly trained athletes having lower circulating lipopolysaccharide 
levels compared with more sedentary individuals102. Among hyper-
cholesterolaemic mice, voluntary wheel running increased primary 
bile acid secretion and faecal excretion103, suggesting that exercise may 
mediate bile acid metabolism. During anaerobic exercise, circulating 
lactate may translocate into the gut lumen87 and alter luminal pH. Exer-
cise increases reactive oxygen species production as well as antioxidant 
enzyme activity, and studies involving genetic and pharmacological 
manipulation of reactive oxygen species have reported impacts on gut 
microbiota diversity104. Exercise increases gut motility and reduces 
colonic transit time105, which is associated with an altered microbiota 
composition106. Physical activity also transiently raises core tempera-
ture, induces short-term restrictions to intestinal blood flow107, alters 
endocrine signalling108, generates mechanical forces and alters food 
and water consumption in ways expected to influence competitive 
interactions within the gut lumen.

Whether these exercise-induced changes in the gut microbi-
ome alter gut microbial contributions to energy metabolism remain 
unknown. One challenge is the diversity of responses across hosts, 
such that even studies detecting effects of exercise on the gut micro-
biome can report no cohort-wide differences in metabolism, possibly 
because of responder and non-responder effects97. The most appar-
ently reproducible effect of exercise on the gut microbiome across 
human and animal studies, higher butyrate production, might be 
expected to increase gut barrier integrity and thereby reduce low-grade 
inflammation, conferring metabolic benefits in cases of overnutrition. 
It is notable, therefore, that high-fat diet-fed obese mice receiving 
faecal transplants from control diet-fed exercised donors exhibited 
weight loss, lower expression of pro-inflammatory cytokines in liver 
and lower fasting blood glucose levels, in combination with enrich-
ment in butyrate-producing taxa80. However, the extent to which these 
improved metabolic parameters were due to exercise versus diet versus 
donor health status is uncertain, as transplants from control diet-fed 
exercised donors elicited more beneficial outcomes than transplants 
from high-fat diet-fed exercised donors, the study did not include 
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a control diet-fed non-exercised donor treatment, and the authors 
reported that diet generally had a stronger effect on the gut microbi-
ome than did exercise80. Studies isolating the energetic consequences 
of exercise-induced changes in the gut microbiome are especially 
needed and will enrich our knowledge of available lifestyle levers for 
microbiome-directed weight management.

Clinical paths and weight management
When diet, exercise and other behavioural interventions prove 
insufficient, clinical intervention may be required to manage 
weight and related sequelae. In this section, we discuss interactions 
between medical interventions and the gut microbiome as well as 
microbiome-targeted clinical therapies for weight management.

Surgical approaches
Surgical treatments for severe obesity aim to reduce food intake and/or 
decrease nutrient absorption109. These interventions have been repro-
ducibly shown to increase microbiota richness (a measure of α-diversity) 
as well as increase the relative abundance of Proteobacteria (Enterobac-
teriaceae) and Akkermansia spp.110–112 (Supplementary Table 2). These 
intervention-associated changes in microbiota composition have been 
functionally linked both to shifts in microbial metabolism112 and to host 
health through the demonstration of reduced adiposity among gnoto-
biotic recipients of post-intervention gut microbiota compared with a 
control microbiota113. Unfortunately, there is evidence that the effects 
of surgical intervention on the microbiome may be short-lived, with 
substantial reversion within 1 year post-intervention114. Although surgi-
cal approaches such as RYGB tend to be highly effective overall, there 
is a subset of patients who exhibit a poor initial response or will regain 
weight following their surgery115. Current evidence that the gut micro-
biome contributes to variable post-RYGB responses is equivocal116,117, 
with studies concurring that gut microbiota composition differs only 
modestly between individuals experiencing successful and poor weight 
loss outcomes. Nevertheless, faecal transplants from human post-RYGB 
patients to antibiotic-treated mice demonstrated that recipient weight 
gain phenotypes tracked donor outcomes117, illustrating that the gut 
microbiota participates to some extent in weight loss success. Signifi-
cantly higher levels of Barnesiella spp. were observed among humans 
experiencing poor weight loss outcomes and their murine gnotobiotic 
recipients, but further experiments are required to evaluate reproduc-
ibility and causal links. Although research is at an early stage, available 
data suggest that the microbiome can modulate surgical success to 
some extent, raising an important but unanswered question: could we 
one day mimic the effects of surgery through precision modification 
of the gut microbiome alone?

Drugs
Interindividual variation in drug response is a major challenge in medi-
cine and is likely mediated in part by the gut microbiome118. There are 
multiple mechanisms through which this may occur, including direct 
interactions between gut microorganisms and oral drugs, off-target 
antibacterial effects of common drugs on the gut microbiome119 and 
effects of drugs on host physiological systems interacting with the 
gut microbiome118. Although this nascent field is rapidly expanding,  
its importance to weight management and metabolic health is clear.

Perhaps, the best-known example of drug–microbiome interac-
tions in metabolic health involves metformin, a first-line therapy for 
type 2 diabetes. Remarkably, transplantation of metformin-treated 
human donor faeces into germ-free mice was capable of improving 

glucose tolerance when compared with pre-treatment donor fae-
ces, providing strong evidence that the gut microbiome contrib-
utes to drug efficacy120. Although metformin is well tolerated and 
widely used, approximately 30% of metformin-treated patients will 
experience gastrointestinal side effects that have been correlated 
with the intestinal abundance of Escherichia coli121. Alternatively, the 
α-glucosidase inhibitor acarbose has considerable off-target effects on 
the gut microbiota122. A highly prevalent microbial acarbose resistance 
mechanism resulting in drug inactivation has recently been identified, 
although its significance to drug efficacy remains to be determined in 
prospective studies123.

Statins are commonly prescribed for the prevention and control 
of cardiovascular disease and target HMG-CoA reductase, which is 
involved in cholesterol biosynthesis. Across more than 3,000 par-
ticipants in 3 cohorts, statin use was negatively associated with an 
inflammation-promoting microbiota signature characterized by a high 
proportion of Bacteroides spp., a low proportion of Faecalibacterium 
spp. and low absolute microbial cell density124. These findings were 
recently replicated and expanded to show that microbiota composi-
tion is capable of predicting treatment responses, with a Bacteroides 
species-enriched, low-diversity microbiota associated with not only 
increased adverse outcomes but also increased therapeutic effects125. 
Lower therapeutic benefits of statins among individuals with higher 
baseline gut microbial diversity were found even after correcting 
for the possibility that individuals harbouring higher gut microbial 
diversity are healthier and/or prescribed less-potent statin doses125, 
suggesting that higher gut microbial diversity itself may hamper drug 
efficacy.

Faecal microbiota transplantation and other restoration 
approaches
Many organisms harbour redundant capacities for modulating 
metabolic health, raising hopes of therapeutic manipulation via the 
transfer of whole microbial communities through faecal microbiota 
transplantation (FMT). FMT has proven effective in combating recal-
citrant infection by Clostridioides difficile126 and has shown promise 
in inflammatory bowel disease127. However, results of FMT for weight 
management and obesity in humans have been mixed, ranging from 
no clinical effect128 to positive effects on secondary outcomes such as 
reduced abdominal adiposity129 and increased insulin response when 
coupled to diet intervention130. A recent study examined whether FMT 
could be used to maintain weight loss after lifestyle-based intervention 
through transplant of the microbiome of an individual at their point of 
maximal weight loss131,132. Patients with obesity or dyslipidaemia under-
went a 6-month period of lifestyle-driven weight loss through exer-
cise guidance and consuming either a healthy diet, Mediterranean diet  
or green-Mediterranean diet (Mediterranean diet plus green tea and 
Wolffia globosa-based shake)131. For the subsequent 8 months, parti-
cipants were given either capsules containing autologous faeces col-
lected at the end of the 6-month weight-loss phase or placebo. Only the 
green-Mediterranean diet group experienced significant changes in  
the gut microbiome during the weight-loss phase and, correspondingly, 
only in the green-Mediterranean group did autologous FMT attenuate 
weight regain, waist circumference gain and insulin rebound versus 
placebo131,132. Such data suggest that whole community replacement 
approaches are unlikely to be effective as a standalone solution, espe-
cially as autologous FMT circumvents some of the broader safety and 
ecosystem-matching challenges of heterologous FMT and therefore 
in many ways represents a best-case scenario.
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Alternatively, microbiome restoration could be accomplished 
in more targeted ways that harness defined sets of microorganisms 
or microbial products robustly associated with health. Although the 
effects of traditional probiotics and prebiotics based on lactobacilli 
and bifidobacteria seem to have limited effects on weight or glucose 
homeostasis65–68,70, new candidates are under active development. 
For instance, administration of pasteurized A. muciniphila in animal 
models seems safe and can protect against diet-induced obesity, insulin 
resistance and low-grade inflammation through positive effects on gut 
barrier integrity133. Correspondingly, a recent exploratory human study 
with 40 participants found that daily oral administration of 1010 pas-
teurized A. muciniphila over a 3-month period was well tolerated, 
significantly reduced insulin resistance and insulinaemia and was asso-
ciated with nonsignificant reductions in body fat and hip circumference 
versus baseline (P = 0.09)134. The finding that the efficacy of pasteurized 
A. muciniphila is higher than that of live bacteria133 improves safety 
and ensures longer shelf-stability. In addition, recent discoveries that 
efficacy may be driven by the outer membrane protein Amuc_1100 
(ref.  133) or secreted protein P9 (ref.  135), with additional benefits for 
homeostatic immunity through effects of the phosphatidylethanola-
mine a15:0-i15:0 (ref.  136), provide targets for drug development and 
the prospect of more predictable dosing kinetics, illuminating a path 
for translating basic discoveries into the clinic.

Towards microbiome-aware weight management
Key advances in our understanding of the influences of the gut micro-
biome on energy metabolism have been made in animal models, espe-
cially mice, that differ from humans in several aspects of anatomy, 
physiology, behaviour as well as microbiome structure and function137. 
Therefore, realizing the therapeutic promise of the gut microbiome in 
ameliorating metabolic dysfunction will require substantial translational 
research. Intensified challenges in humans compared with animals mod-
els include high degrees of interindividual variation and longitudinal 
resilience in the human gut microbiome13,138, a low degree of ecological 
control driving day-to-day variation of the gut microbiome around these 
long-term signatures139 and developmental plasticity exerting its influ-
ence over an extended human lifespan, resulting in greater temporal 
disconnect between host phenotypes and contributory microbial signa-
tures. Developing protocols and synthetic microbial communities that 
can enable animal hosts to more faithfully replicate human–microbiome 
interactions in energy metabolism will be critical in narrowing the trans-
lational gap. It will also be useful to supplement murine studies with gno-
tobiotic studies in larger animals such as pigs, which more closely mimic 
humans in aspects of life history, physiology and the microbiome. In vivo 
approaches, especially those involving bioreactors designed to model 
physiological conditions in the human gut140, and ex vivo approaches, 
such as organoids derived from induced pluripotent stem cells or biop-
sied tissue141, are important complementary tools that have the benefit 
of greater control and reproducibility.

Difficulties in stably manipulating the human microbiome across 
individuals and environments suggest that one-size-fits-all and unre-
fined brute force approaches such as FMT are unlikely to be durably 
successful. Rather, greater long-term impacts will likely be achieved 
through personalized interventions targeting particular gut microbial 
functions and metabolites. In doing so, we will need to remain mindful 
of the pleiotropic effects of bacterial products. For instance, SCFAs par-
ticipate in colonic energy salvage while also minimizing hunger, increas-
ing thermogenesis and regulating embryonic tissue development 
(Figs. 2–4), raising the possibility that SCFA-based interventions could 

have complex, even intergenerational33, outcomes. Confronting these 
challenges will enable rational manipulation of the gut microbiome to 
be sufficiently long lasting to improve health and either generalizable 
across individuals or personalized in an equitable manner.

We anticipate that within the next 10 years, many of the 
microbiome-modulating levers at our disposal will be revealed. Ongo-
ing technical improvements in strain-level identification, culturing, 
genome editing and metabolite identification will enable us to char-
acterize with greater specificity the microbial players of interest and 
the ecological conditions that encourage their presence. For instance, 
recent studies have discovered substantial whole-genome divergence 
among A. muciniphila strains, despite homogeneity in their 16S rRNA 
gene sequences142 that may contribute to explaining why strains exhibit 
differential impacts on inflammation143. Continued delineation of 
the mechanisms through which the microbiome manipulates energy 
balance is expected to highlight promising targets for intervention in 
pathways regulating hunger and satiety, dietary energy harvest, energy 
allocation and interactions between energy metabolism and inflamma-
tion. For instance, leveraging information about the thermogenic effect 
of secondary bile acids via TGR5-mediated activation of brown adipose 
tissue (Figs. 3 and 4), it was recently discovered that weight rebound 
after caloric restriction could be suppressed by supplementing mice 
with non-12α-hydroxylated bile acids or Parabacteroides distasonis, 
a bacterium capable of producing these acids22. In addition, rapidly 
advancing knowledge of bacterial chemistry, including pervasive 
reciprocal interactions between the gut microbiome and therapeutic 
drugs118,144, could suggest new microbiome-targeted approaches for 
enhancing the efficacy of existing drugs by potentiating or inhibit-
ing bacterial biotransformations. Emergent knowledge of bacterial 
xenobiotic metabolism could eventually shape clinical decisions with 
regard to drug choice, dosage and/or coadministered agents, as has 
been proposed for non-metabolic drugs such as digoxin, irinotecan and 
levodopa145–147. By contrast, advances in our knowledge of small intes-
tinal and mucosa-associated microbiota are proceeding more slowly, 
hampered by the greater invasiveness required in procuring such 
samples. Nevertheless, it is likely in the small intestine, where hosts and 
microorganisms compete directly for nutrients, and in the mucus layer, 
where host tissues and microorganisms come into closest proximity, 
that interactions are most consequential for energy metabolism and 
inflammation. Greater attention to these microbial communities is 
likely to reveal additional, high-impact targets for modulation.

Most research to date has focused on overweight and obesity rather 
than undernutrition. Yet existing evidence suggests that disruptions 
of the gut microbiome precede the onset of childhood malnutrition31, 
correlate with the severity of wasting26 and stunting148 and transmit 
weight loss phenotypes to gnotobiotic mice on transplantation25. Such 
data suggest a pivotal role for the gut microbiome in undernutrition 
and ripe opportunities for the development of microbiome- focused 
therapies to ameliorate health for the one-in-three children worldwide 
who suffer from stunting and/or wasting.

Although much remains to be discovered, promising microbiome-
focused clinical trials targeting metabolic phenotypes associated 
with undernutrition or overnutrition are currently underway. For 
instance, researchers recently developed several microbiota-directed 
complementary food (MDCF) recipes that were evaluated for their 
ability to mature the gut microbiome of undernourished Bangladeshi 
children to a healthy post-weaning profile149,150. The lead MDCF proto-
type subsequently showed improved efficacy versus standard ready-
to-use therapeutic foods in Bangladeshi toddlers with moderate 
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acute malnutrition, eliciting significant relative improvements in 
weight-for-length and weight-for-age z-scores and changes in plasma 
proteins affecting bone growth and neurodevelopment151. Similarly, 
as discussed earlier, a recent study found that diet was an important 
support for the efficacy of autologous FMT in attenuating weight regain 
among patients with obesity or dyslipidaemia who had undergone a 
6-month period of lifestyle-driven weight loss, as FMT was only ben-
eficial when combined with a specific green-Mediterranean diet131. 
As with MDCF, these data indicate the potential for diet to act as an 
adjuvant for microbiome-targeted therapies. Future human trials of 
microbiome-targeted therapies should aim to standardize diet among 
participants by providing a fixed composition containing substrates 
to support microbial engraftment and the growth of beneficial micro-
organisms. Greater attention to dietary processing will also help to 
standardize delivery of nutrients to the densest microbial community 
in the colon29. Notwithstanding, diet-independent routes of manipula-
tion are also showing promise, as exemplified by a study reporting that 
probiotic administration of pasteurized A. muciniphila or delivery of 
specific Akkermansia-derived effector molecules, such as Amuc_1100, 
can reduce adiposity and insulin resistance134. Collectively, such trials 
serve as important proofs-of-concept, showing that microbiome-aware 
therapies can compare favourably to and complement existing weight 
management schemes.

Outlook
Undernutrition and overnutrition weigh too heavily on public health not 
to leverage emerging transformational knowledge of gut microbial con-
tributions to energy metabolism. Rational manipulation of the micro-
biome could increase the efficacy of existing therapies and generate 
novel treatments, giving physicians and patients new options for weight 
management. Several fundamental challenges will need to be overcome 
to realize this promise, including grappling with the ecological sensitiv-
ity of the gut microbiome, interindividual variability, developmental 
plasticity and pleiotropic effects of the gut microbiome on human 
physiology. However, successes of recent clinical trials targeting both 
undernutrition and overnutrition highlight that microbiome-directed 
interventions for weight management are on the near-term horizon. 
Increased focus on the function and products of the gut microbiome 
rather than composition, enhanced efforts to establish the translational 
significance of discoveries made in animal models and basic research 
to understand the physiological and ecological drivers of inflexion 
points where the microbiome switches between phenotypic buffering 
and exacerbation are needed to effectively leverage the microbiome in 
the ongoing fight to improve global metabolic health.
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